Solve for k
k=3\left(\sqrt{13}-48\right)\approx -133.183346174
Share
Copied to clipboard
4\times 6^{2}=-k+4\sqrt{\frac{21}{16}+6}
Multiply both sides of the equation by 4.
4\times 36=-k+4\sqrt{\frac{21}{16}+6}
Calculate 6 to the power of 2 and get 36.
144=-k+4\sqrt{\frac{21}{16}+6}
Multiply 4 and 36 to get 144.
144=-k+4\sqrt{\frac{21}{16}+\frac{96}{16}}
Convert 6 to fraction \frac{96}{16}.
144=-k+4\sqrt{\frac{21+96}{16}}
Since \frac{21}{16} and \frac{96}{16} have the same denominator, add them by adding their numerators.
144=-k+4\sqrt{\frac{117}{16}}
Add 21 and 96 to get 117.
144=-k+4\times \frac{\sqrt{117}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{117}{16}} as the division of square roots \frac{\sqrt{117}}{\sqrt{16}}.
144=-k+4\times \frac{3\sqrt{13}}{\sqrt{16}}
Factor 117=3^{2}\times 13. Rewrite the square root of the product \sqrt{3^{2}\times 13} as the product of square roots \sqrt{3^{2}}\sqrt{13}. Take the square root of 3^{2}.
144=-k+4\times \frac{3\sqrt{13}}{4}
Calculate the square root of 16 and get 4.
144=-k+\frac{4\times 3\sqrt{13}}{4}
Express 4\times \frac{3\sqrt{13}}{4} as a single fraction.
144=-k+3\sqrt{13}
Cancel out 4 and 4.
-k+3\sqrt{13}=144
Swap sides so that all variable terms are on the left hand side.
-k=144-3\sqrt{13}
Subtract 3\sqrt{13} from both sides.
\frac{-k}{-1}=\frac{144-3\sqrt{13}}{-1}
Divide both sides by -1.
k=\frac{144-3\sqrt{13}}{-1}
Dividing by -1 undoes the multiplication by -1.
k=3\sqrt{13}-144
Divide 144-3\sqrt{13} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}