Evaluate
\frac{149}{26}\approx 5.730769231
Factor
\frac{149}{2 \cdot 13} = 5\frac{19}{26} = 5.730769230769231
Share
Copied to clipboard
\frac{570}{-65}-\left(-\frac{4\times 4+1}{4}\right)+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Expand \frac{57}{-6.5} by multiplying both numerator and the denominator by 10.
-\frac{114}{13}-\left(-\frac{4\times 4+1}{4}\right)+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Reduce the fraction \frac{570}{-65} to lowest terms by extracting and canceling out 5.
-\frac{114}{13}-\left(-\frac{16+1}{4}\right)+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Multiply 4 and 4 to get 16.
-\frac{114}{13}-\left(-\frac{17}{4}\right)+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Add 16 and 1 to get 17.
-\frac{114}{13}+\frac{17}{4}+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
The opposite of -\frac{17}{4} is \frac{17}{4}.
-\frac{456}{52}+\frac{221}{52}+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Least common multiple of 13 and 4 is 52. Convert -\frac{114}{13} and \frac{17}{4} to fractions with denominator 52.
\frac{-456+221}{52}+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Since -\frac{456}{52} and \frac{221}{52} have the same denominator, add them by adding their numerators.
-\frac{235}{52}+\frac{8\times 4+3}{4}-\frac{3\times 2+1}{2}+5
Add -456 and 221 to get -235.
-\frac{235}{52}+\frac{32+3}{4}-\frac{3\times 2+1}{2}+5
Multiply 8 and 4 to get 32.
-\frac{235}{52}+\frac{35}{4}-\frac{3\times 2+1}{2}+5
Add 32 and 3 to get 35.
-\frac{235}{52}+\frac{455}{52}-\frac{3\times 2+1}{2}+5
Least common multiple of 52 and 4 is 52. Convert -\frac{235}{52} and \frac{35}{4} to fractions with denominator 52.
\frac{-235+455}{52}-\frac{3\times 2+1}{2}+5
Since -\frac{235}{52} and \frac{455}{52} have the same denominator, add them by adding their numerators.
\frac{220}{52}-\frac{3\times 2+1}{2}+5
Add -235 and 455 to get 220.
\frac{55}{13}-\frac{3\times 2+1}{2}+5
Reduce the fraction \frac{220}{52} to lowest terms by extracting and canceling out 4.
\frac{55}{13}-\frac{6+1}{2}+5
Multiply 3 and 2 to get 6.
\frac{55}{13}-\frac{7}{2}+5
Add 6 and 1 to get 7.
\frac{110}{26}-\frac{91}{26}+5
Least common multiple of 13 and 2 is 26. Convert \frac{55}{13} and \frac{7}{2} to fractions with denominator 26.
\frac{110-91}{26}+5
Since \frac{110}{26} and \frac{91}{26} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{26}+5
Subtract 91 from 110 to get 19.
\frac{19}{26}+\frac{130}{26}
Convert 5 to fraction \frac{130}{26}.
\frac{19+130}{26}
Since \frac{19}{26} and \frac{130}{26} have the same denominator, add them by adding their numerators.
\frac{149}{26}
Add 19 and 130 to get 149.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}