Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x-\left(x^{2}-4x+4\right)-3\left(2x+5\right)=4\left(-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
5x-x^{2}+4x-4-3\left(2x+5\right)=4\left(-1\right)
To find the opposite of x^{2}-4x+4, find the opposite of each term.
9x-x^{2}-4-3\left(2x+5\right)=4\left(-1\right)
Combine 5x and 4x to get 9x.
9x-x^{2}-4-6x-15=4\left(-1\right)
Use the distributive property to multiply -3 by 2x+5.
3x-x^{2}-4-15=4\left(-1\right)
Combine 9x and -6x to get 3x.
3x-x^{2}-19=4\left(-1\right)
Subtract 15 from -4 to get -19.
3x-x^{2}-19=-4
Multiply 4 and -1 to get -4.
3x-x^{2}-19+4=0
Add 4 to both sides.
3x-x^{2}-15=0
Add -19 and 4 to get -15.
-x^{2}+3x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\left(-15\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9-60}}{2\left(-1\right)}
Multiply 4 times -15.
x=\frac{-3±\sqrt{-51}}{2\left(-1\right)}
Add 9 to -60.
x=\frac{-3±\sqrt{51}i}{2\left(-1\right)}
Take the square root of -51.
x=\frac{-3±\sqrt{51}i}{-2}
Multiply 2 times -1.
x=\frac{-3+\sqrt{51}i}{-2}
Now solve the equation x=\frac{-3±\sqrt{51}i}{-2} when ± is plus. Add -3 to i\sqrt{51}.
x=\frac{-\sqrt{51}i+3}{2}
Divide -3+i\sqrt{51} by -2.
x=\frac{-\sqrt{51}i-3}{-2}
Now solve the equation x=\frac{-3±\sqrt{51}i}{-2} when ± is minus. Subtract i\sqrt{51} from -3.
x=\frac{3+\sqrt{51}i}{2}
Divide -3-i\sqrt{51} by -2.
x=\frac{-\sqrt{51}i+3}{2} x=\frac{3+\sqrt{51}i}{2}
The equation is now solved.
5x-\left(x^{2}-4x+4\right)-3\left(2x+5\right)=4\left(-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
5x-x^{2}+4x-4-3\left(2x+5\right)=4\left(-1\right)
To find the opposite of x^{2}-4x+4, find the opposite of each term.
9x-x^{2}-4-3\left(2x+5\right)=4\left(-1\right)
Combine 5x and 4x to get 9x.
9x-x^{2}-4-6x-15=4\left(-1\right)
Use the distributive property to multiply -3 by 2x+5.
3x-x^{2}-4-15=4\left(-1\right)
Combine 9x and -6x to get 3x.
3x-x^{2}-19=4\left(-1\right)
Subtract 15 from -4 to get -19.
3x-x^{2}-19=-4
Multiply 4 and -1 to get -4.
3x-x^{2}=-4+19
Add 19 to both sides.
3x-x^{2}=15
Add -4 and 19 to get 15.
-x^{2}+3x=15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=\frac{15}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=\frac{15}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=\frac{15}{-1}
Divide 3 by -1.
x^{2}-3x=-15
Divide 15 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-15+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-15+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{51}{4}
Add -15 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=-\frac{51}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{51}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{51}i}{2} x-\frac{3}{2}=-\frac{\sqrt{51}i}{2}
Simplify.
x=\frac{3+\sqrt{51}i}{2} x=\frac{-\sqrt{51}i+3}{2}
Add \frac{3}{2} to both sides of the equation.