Solve for p (complex solution)
\left\{\begin{matrix}p=-\frac{4qx+b}{4x+1}\text{, }&x\neq -\frac{1}{4}\\p\in \mathrm{C}\text{, }&q=b\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=-\frac{4qx+b}{4x+1}\text{, }&x\neq -\frac{1}{4}\\p\in \mathrm{R}\text{, }&q=b\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Solve for b
b=-\left(4x\left(p+q\right)+p\right)
Graph
Share
Copied to clipboard
\left(4p+4q\right)x+p+b=0
Use the distributive property to multiply 4 by p+q.
4px+4qx+p+b=0
Use the distributive property to multiply 4p+4q by x.
4px+p+b=-4qx
Subtract 4qx from both sides. Anything subtracted from zero gives its negation.
4px+p=-4qx-b
Subtract b from both sides.
\left(4x+1\right)p=-4qx-b
Combine all terms containing p.
\frac{\left(4x+1\right)p}{4x+1}=\frac{-4qx-b}{4x+1}
Divide both sides by 4x+1.
p=\frac{-4qx-b}{4x+1}
Dividing by 4x+1 undoes the multiplication by 4x+1.
p=-\frac{4qx+b}{4x+1}
Divide -4qx-b by 4x+1.
\left(4p+4q\right)x+p+b=0
Use the distributive property to multiply 4 by p+q.
4px+4qx+p+b=0
Use the distributive property to multiply 4p+4q by x.
4px+p+b=-4qx
Subtract 4qx from both sides. Anything subtracted from zero gives its negation.
4px+p=-4qx-b
Subtract b from both sides.
\left(4x+1\right)p=-4qx-b
Combine all terms containing p.
\frac{\left(4x+1\right)p}{4x+1}=\frac{-4qx-b}{4x+1}
Divide both sides by 4x+1.
p=\frac{-4qx-b}{4x+1}
Dividing by 4x+1 undoes the multiplication by 4x+1.
p=-\frac{4qx+b}{4x+1}
Divide -4qx-b by 4x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}