Evaluate
\frac{32\sqrt{2}}{5}\approx 9.050966799
Share
Copied to clipboard
\frac{8\sqrt{2}\sqrt{\frac{3\times 16+1}{16}\times \frac{2\times 25+14}{25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Multiply 4 and 2 to get 8.
\frac{8\sqrt{2}\sqrt{\frac{48+1}{16}\times \frac{2\times 25+14}{25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Multiply 3 and 16 to get 48.
\frac{8\sqrt{2}\sqrt{\frac{49}{16}\times \frac{2\times 25+14}{25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Add 48 and 1 to get 49.
\frac{8\sqrt{2}\sqrt{\frac{49}{16}\times \frac{50+14}{25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Multiply 2 and 25 to get 50.
\frac{8\sqrt{2}\sqrt{\frac{49}{16}\times \frac{64}{25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Add 50 and 14 to get 64.
\frac{8\sqrt{2}\sqrt{\frac{49\times 64}{16\times 25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Multiply \frac{49}{16} times \frac{64}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{8\sqrt{2}\sqrt{\frac{3136}{400}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Do the multiplications in the fraction \frac{49\times 64}{16\times 25}.
\frac{8\sqrt{2}\sqrt{\frac{196}{25}}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Reduce the fraction \frac{3136}{400} to lowest terms by extracting and canceling out 16.
\frac{8\sqrt{2}\times \frac{14}{5}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Rewrite the square root of the division \frac{196}{25} as the division of square roots \frac{\sqrt{196}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{\frac{8\times 14}{5}\sqrt{2}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Express 8\times \frac{14}{5} as a single fraction.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{5\times 16+1}{16}\times \frac{2\times 81+34}{81}}}
Multiply 8 and 14 to get 112.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{80+1}{16}\times \frac{2\times 81+34}{81}}}
Multiply 5 and 16 to get 80.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{81}{16}\times \frac{2\times 81+34}{81}}}
Add 80 and 1 to get 81.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{81}{16}\times \frac{162+34}{81}}}
Multiply 2 and 81 to get 162.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{81}{16}\times \frac{196}{81}}}
Add 162 and 34 to get 196.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{81\times 196}{16\times 81}}}
Multiply \frac{81}{16} times \frac{196}{81} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{196}{16}}}
Cancel out 81 in both numerator and denominator.
\frac{\frac{112}{5}\sqrt{2}}{\sqrt{\frac{49}{4}}}
Reduce the fraction \frac{196}{16} to lowest terms by extracting and canceling out 4.
\frac{\frac{112}{5}\sqrt{2}}{\frac{7}{2}}
Rewrite the square root of the division \frac{49}{4} as the division of square roots \frac{\sqrt{49}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{\frac{112}{5}\sqrt{2}\times 2}{7}
Divide \frac{112}{5}\sqrt{2} by \frac{7}{2} by multiplying \frac{112}{5}\sqrt{2} by the reciprocal of \frac{7}{2}.
\frac{\frac{112\times 2}{5}\sqrt{2}}{7}
Express \frac{112}{5}\times 2 as a single fraction.
\frac{\frac{224}{5}\sqrt{2}}{7}
Multiply 112 and 2 to get 224.
\frac{32}{5}\sqrt{2}
Divide \frac{224}{5}\sqrt{2} by 7 to get \frac{32}{5}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}