+ 30 \% + \frac { 1 } { 16 } = \frac { 11 } { 13 } + \frac { 1 } { 3 } \times \frac { 26 } { 33 } =
Verify
false
Share
Copied to clipboard
\frac{3}{10}+\frac{1}{16}=\frac{11}{13}+\frac{1}{3}\times \frac{26}{33}
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
\frac{24}{80}+\frac{5}{80}=\frac{11}{13}+\frac{1}{3}\times \frac{26}{33}
Least common multiple of 10 and 16 is 80. Convert \frac{3}{10} and \frac{1}{16} to fractions with denominator 80.
\frac{24+5}{80}=\frac{11}{13}+\frac{1}{3}\times \frac{26}{33}
Since \frac{24}{80} and \frac{5}{80} have the same denominator, add them by adding their numerators.
\frac{29}{80}=\frac{11}{13}+\frac{1}{3}\times \frac{26}{33}
Add 24 and 5 to get 29.
\frac{29}{80}=\frac{11}{13}+\frac{1\times 26}{3\times 33}
Multiply \frac{1}{3} times \frac{26}{33} by multiplying numerator times numerator and denominator times denominator.
\frac{29}{80}=\frac{11}{13}+\frac{26}{99}
Do the multiplications in the fraction \frac{1\times 26}{3\times 33}.
\frac{29}{80}=\frac{1089}{1287}+\frac{338}{1287}
Least common multiple of 13 and 99 is 1287. Convert \frac{11}{13} and \frac{26}{99} to fractions with denominator 1287.
\frac{29}{80}=\frac{1089+338}{1287}
Since \frac{1089}{1287} and \frac{338}{1287} have the same denominator, add them by adding their numerators.
\frac{29}{80}=\frac{1427}{1287}
Add 1089 and 338 to get 1427.
\frac{37323}{102960}=\frac{114160}{102960}
Least common multiple of 80 and 1287 is 102960. Convert \frac{29}{80} and \frac{1427}{1287} to fractions with denominator 102960.
\text{false}
Compare \frac{37323}{102960} and \frac{114160}{102960}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}