Solve for s
s=-\frac{x}{3}-17
Solve for x
x=-3s-51
Graph
Share
Copied to clipboard
3s-4x+16=x\left(-5\right)+5-40
Use the distributive property to multiply -4 by x-4.
3s-4x+16=x\left(-5\right)-35
Subtract 40 from 5 to get -35.
3s+16=x\left(-5\right)-35+4x
Add 4x to both sides.
3s+16=-x-35
Combine x\left(-5\right) and 4x to get -x.
3s=-x-35-16
Subtract 16 from both sides.
3s=-x-51
Subtract 16 from -35 to get -51.
\frac{3s}{3}=\frac{-x-51}{3}
Divide both sides by 3.
s=\frac{-x-51}{3}
Dividing by 3 undoes the multiplication by 3.
s=-\frac{x}{3}-17
Divide -x-51 by 3.
3s-4x+16=x\left(-5\right)+5-40
Use the distributive property to multiply -4 by x-4.
3s-4x+16=x\left(-5\right)-35
Subtract 40 from 5 to get -35.
3s-4x+16-x\left(-5\right)=-35
Subtract x\left(-5\right) from both sides.
3s+x+16=-35
Combine -4x and -x\left(-5\right) to get x.
x+16=-35-3s
Subtract 3s from both sides.
x=-35-3s-16
Subtract 16 from both sides.
x=-51-3s
Subtract 16 from -35 to get -51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}