+ 2 - ( - 9 ) - ( - 8 y - ( - 8 ) =
Evaluate
8y+3
Differentiate w.r.t. y
8
Graph
Share
Copied to clipboard
2+9-\left(-8y-\left(-8\right)\right)
The opposite of -9 is 9.
11-\left(-8y-\left(-8\right)\right)
Add 2 and 9 to get 11.
11-\left(-8y+8\right)
The opposite of -8 is 8.
11-\left(-8y\right)-8
To find the opposite of -8y+8, find the opposite of each term.
11+8y-8
The opposite of -8y is 8y.
3+8y
Subtract 8 from 11 to get 3.
\frac{\mathrm{d}}{\mathrm{d}y}(2+9-\left(-8y-\left(-8\right)\right))
The opposite of -9 is 9.
\frac{\mathrm{d}}{\mathrm{d}y}(11-\left(-8y-\left(-8\right)\right))
Add 2 and 9 to get 11.
\frac{\mathrm{d}}{\mathrm{d}y}(11-\left(-8y+8\right))
The opposite of -8 is 8.
\frac{\mathrm{d}}{\mathrm{d}y}(11-\left(-8y\right)-8)
To find the opposite of -8y+8, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}y}(11+8y-8)
The opposite of -8y is 8y.
\frac{\mathrm{d}}{\mathrm{d}y}(3+8y)
Subtract 8 from 11 to get 3.
8y^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
8y^{0}
Subtract 1 from 1.
8\times 1
For any term t except 0, t^{0}=1.
8
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}