Solve for p
p=\frac{2v}{3}
v\neq 0
Solve for v
v=\frac{3p}{2}
p\neq 0
Share
Copied to clipboard
2p=2v+2p\left(-\frac{1}{2}\right)
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2p, the least common multiple of p,2.
2p=2v-p
Multiply 2 and -\frac{1}{2} to get -1.
2p+p=2v
Add p to both sides.
3p=2v
Combine 2p and p to get 3p.
\frac{3p}{3}=\frac{2v}{3}
Divide both sides by 3.
p=\frac{2v}{3}
Dividing by 3 undoes the multiplication by 3.
p=\frac{2v}{3}\text{, }p\neq 0
Variable p cannot be equal to 0.
2p=2v+2p\left(-\frac{1}{2}\right)
Multiply both sides of the equation by 2p, the least common multiple of p,2.
2p=2v-p
Multiply 2 and -\frac{1}{2} to get -1.
2v-p=2p
Swap sides so that all variable terms are on the left hand side.
2v=2p+p
Add p to both sides.
2v=3p
Combine 2p and p to get 3p.
\frac{2v}{2}=\frac{3p}{2}
Divide both sides by 2.
v=\frac{3p}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}