Solve for p
\left\{\begin{matrix}p=\frac{\left(-2+i\right)q}{z}-5i\text{, }&z\neq 0\\p\in \mathrm{C}\text{, }&q=0\text{ and }z=0\end{matrix}\right.
Solve for q
q=\left(-\frac{2}{5}-\frac{1}{5}i\right)z\left(p+5i\right)
Share
Copied to clipboard
pz+5iz+q\left(2-i\right)=0
Use the distributive property to multiply p+5i by z.
pz+q\left(2-i\right)=-5iz
Subtract 5iz from both sides. Anything subtracted from zero gives its negation.
pz=-5iz-q\left(2-i\right)
Subtract q\left(2-i\right) from both sides.
pz=-5iz+\left(-2+i\right)q
Multiply -1 and 2-i to get -2+i.
zp=\left(-2+i\right)q-5iz
The equation is in standard form.
\frac{zp}{z}=\frac{\left(-2+i\right)q-5iz}{z}
Divide both sides by z.
p=\frac{\left(-2+i\right)q-5iz}{z}
Dividing by z undoes the multiplication by z.
p=\frac{\left(-2+i\right)q}{z}-5i
Divide -5iz+\left(-2+i\right)q by z.
pz+5iz+q\left(2-i\right)=0
Use the distributive property to multiply p+5i by z.
5iz+q\left(2-i\right)=-pz
Subtract pz from both sides. Anything subtracted from zero gives its negation.
q\left(2-i\right)=-pz-5iz
Subtract 5iz from both sides.
\left(2-i\right)q=-pz-5iz
The equation is in standard form.
\frac{\left(2-i\right)q}{2-i}=-\frac{z\left(p+5i\right)}{2-i}
Divide both sides by 2-i.
q=-\frac{z\left(p+5i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
q=\left(-\frac{2}{5}-\frac{1}{5}i\right)z\left(p+5i\right)
Divide -z\left(p+5i\right) by 2-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}