+ ( e ^ { x } + 1 ) \sin y d y = 0
Solve for x
x\in \mathrm{R}
y=0\text{ or }\exists n_{1}\in \mathrm{Z}\text{ : }d=\frac{\pi n_{1}}{y^{2}}
Solve for d
\left\{\begin{matrix}d=\frac{\pi n_{1}}{y^{2}}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Share
Copied to clipboard
\left(e^{x}+1\right)\sin(y^{2}d)=0
Multiply y and y to get y^{2}.
e^{x}\sin(y^{2}d)+\sin(y^{2}d)=0
Use the distributive property to multiply e^{x}+1 by \sin(y^{2}d).
\sin(dy^{2})e^{x}+\sin(dy^{2})=0
Use the rules of exponents and logarithms to solve the equation.
\sin(dy^{2})e^{x}=-\sin(dy^{2})
Subtract \sin(y^{2}d) from both sides of the equation.
e^{x}=-1
Divide both sides by \sin(y^{2}d).
\log(e^{x})=\log(-1)
Take the logarithm of both sides of the equation.
x\log(e)=\log(-1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(-1)}{\log(e)}
Divide both sides by \log(e).
x=\log_{e}\left(-1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}