Evaluate
\frac{Hb^{4}}{a-b}
a\neq 0\text{ and }b\neq 0\text{ and }|a|\neq |b|
Expand
-\frac{Hb^{4}}{b-a}
a\neq 0\text{ and }b\neq 0\text{ and }|a|\neq |b|
Share
Copied to clipboard
\frac{H\times \frac{\left(a+b\right)\left(a-b\right)a^{2}}{\left(a-b\right)^{2}}}{\frac{a\left(a+b\right)}{b^{2}}}\times \frac{b^{2}}{a}
Factor the expressions that are not already factored in \frac{a^{4}-a^{2}b^{2}}{\left(a-b\right)^{2}}.
\frac{H\times \frac{\left(a+b\right)a^{2}}{a-b}}{\frac{a\left(a+b\right)}{b^{2}}}\times \frac{b^{2}}{a}
Cancel out a-b in both numerator and denominator.
\frac{\frac{H\left(a+b\right)a^{2}}{a-b}}{\frac{a\left(a+b\right)}{b^{2}}}\times \frac{b^{2}}{a}
Express H\times \frac{\left(a+b\right)a^{2}}{a-b} as a single fraction.
\frac{H\left(a+b\right)a^{2}b^{2}}{\left(a-b\right)a\left(a+b\right)}\times \frac{b^{2}}{a}
Divide \frac{H\left(a+b\right)a^{2}}{a-b} by \frac{a\left(a+b\right)}{b^{2}} by multiplying \frac{H\left(a+b\right)a^{2}}{a-b} by the reciprocal of \frac{a\left(a+b\right)}{b^{2}}.
\frac{Hab^{2}}{a-b}\times \frac{b^{2}}{a}
Cancel out a\left(a+b\right) in both numerator and denominator.
\frac{Hab^{2}b^{2}}{\left(a-b\right)a}
Multiply \frac{Hab^{2}}{a-b} times \frac{b^{2}}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{Hb^{2}b^{2}}{a-b}
Cancel out a in both numerator and denominator.
\frac{Hb^{4}}{a-b}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{H\times \frac{\left(a+b\right)\left(a-b\right)a^{2}}{\left(a-b\right)^{2}}}{\frac{a\left(a+b\right)}{b^{2}}}\times \frac{b^{2}}{a}
Factor the expressions that are not already factored in \frac{a^{4}-a^{2}b^{2}}{\left(a-b\right)^{2}}.
\frac{H\times \frac{\left(a+b\right)a^{2}}{a-b}}{\frac{a\left(a+b\right)}{b^{2}}}\times \frac{b^{2}}{a}
Cancel out a-b in both numerator and denominator.
\frac{\frac{H\left(a+b\right)a^{2}}{a-b}}{\frac{a\left(a+b\right)}{b^{2}}}\times \frac{b^{2}}{a}
Express H\times \frac{\left(a+b\right)a^{2}}{a-b} as a single fraction.
\frac{H\left(a+b\right)a^{2}b^{2}}{\left(a-b\right)a\left(a+b\right)}\times \frac{b^{2}}{a}
Divide \frac{H\left(a+b\right)a^{2}}{a-b} by \frac{a\left(a+b\right)}{b^{2}} by multiplying \frac{H\left(a+b\right)a^{2}}{a-b} by the reciprocal of \frac{a\left(a+b\right)}{b^{2}}.
\frac{Hab^{2}}{a-b}\times \frac{b^{2}}{a}
Cancel out a\left(a+b\right) in both numerator and denominator.
\frac{Hab^{2}b^{2}}{\left(a-b\right)a}
Multiply \frac{Hab^{2}}{a-b} times \frac{b^{2}}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{Hb^{2}b^{2}}{a-b}
Cancel out a in both numerator and denominator.
\frac{Hb^{4}}{a-b}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}