Evaluate
\frac{344}{155}\approx 2.219354839
Factor
\frac{2 ^ {3} \cdot 43}{5 \cdot 31} = 2\frac{34}{155} = 2.2193548387096773
Share
Copied to clipboard
\begin{array}{l}\phantom{155)}\phantom{1}\\155\overline{)344}\\\end{array}
Use the 1^{st} digit 3 from dividend 344
\begin{array}{l}\phantom{155)}0\phantom{2}\\155\overline{)344}\\\end{array}
Since 3 is less than 155, use the next digit 4 from dividend 344 and add 0 to the quotient
\begin{array}{l}\phantom{155)}0\phantom{3}\\155\overline{)344}\\\end{array}
Use the 2^{nd} digit 4 from dividend 344
\begin{array}{l}\phantom{155)}00\phantom{4}\\155\overline{)344}\\\end{array}
Since 34 is less than 155, use the next digit 4 from dividend 344 and add 0 to the quotient
\begin{array}{l}\phantom{155)}00\phantom{5}\\155\overline{)344}\\\end{array}
Use the 3^{rd} digit 4 from dividend 344
\begin{array}{l}\phantom{155)}002\phantom{6}\\155\overline{)344}\\\phantom{155)}\underline{\phantom{}310\phantom{}}\\\phantom{155)9}34\\\end{array}
Find closest multiple of 155 to 344. We see that 2 \times 155 = 310 is the nearest. Now subtract 310 from 344 to get reminder 34. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }34
Since 34 is less than 155, stop the division. The reminder is 34. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}