Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{5}{4}\sqrt{3}-\frac{5}{2}\sqrt{5}\right)\left(\sqrt{15}+5\right)-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Use the distributive property to multiply \frac{5}{4} by \sqrt{3}-2\sqrt{5}.
\frac{5}{4}\sqrt{3}\sqrt{15}+\frac{25}{4}\sqrt{3}-\frac{5}{2}\sqrt{5}\sqrt{15}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Use the distributive property to multiply \frac{5}{4}\sqrt{3}-\frac{5}{2}\sqrt{5} by \sqrt{15}+5.
\frac{5}{4}\sqrt{3}\sqrt{3}\sqrt{5}+\frac{25}{4}\sqrt{3}-\frac{5}{2}\sqrt{5}\sqrt{15}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{5}{4}\times 3\sqrt{5}+\frac{25}{4}\sqrt{3}-\frac{5}{2}\sqrt{5}\sqrt{15}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{15}{4}\sqrt{5}+\frac{25}{4}\sqrt{3}-\frac{5}{2}\sqrt{5}\sqrt{15}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \frac{5}{4} and 3 to get \frac{15}{4}.
\frac{15}{4}\sqrt{5}+\frac{25}{4}\sqrt{3}-\frac{5}{2}\sqrt{5}\sqrt{5}\sqrt{3}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{15}{4}\sqrt{5}+\frac{25}{4}\sqrt{3}-\frac{5}{2}\times 5\sqrt{3}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15}{4}\sqrt{5}+\frac{25}{4}\sqrt{3}-\frac{25}{2}\sqrt{3}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Multiply -\frac{5}{2} and 5 to get -\frac{25}{2}.
\frac{15}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\frac{25}{2}\sqrt{5}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Combine \frac{25}{4}\sqrt{3} and -\frac{25}{2}\sqrt{3} to get -\frac{25}{4}\sqrt{3}.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(\sqrt{10}-\sqrt{2}\right)^{2}
Combine \frac{15}{4}\sqrt{5} and -\frac{25}{2}\sqrt{5} to get -\frac{35}{4}\sqrt{5}.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{10}-\sqrt{2}\right)^{2}.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{10} is 10.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}\right)
Multiply -2 and 2 to get -4.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(10-4\sqrt{5}+2\right)
The square of \sqrt{2} is 2.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-\left(12-4\sqrt{5}\right)
Add 10 and 2 to get 12.
-\frac{35}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-12+4\sqrt{5}
To find the opposite of 12-4\sqrt{5}, find the opposite of each term.
-\frac{19}{4}\sqrt{5}-\frac{25}{4}\sqrt{3}-12
Combine -\frac{35}{4}\sqrt{5} and 4\sqrt{5} to get -\frac{19}{4}\sqrt{5}.