Solve for x
x=\frac{\sqrt{7}-8}{3}\approx -1.784749563
x=\frac{-\sqrt{7}-8}{3}\approx -3.54858377
Graph
Share
Copied to clipboard
\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0
Variable x cannot be equal to any of the values -4,-3,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+3\right)\left(x+4\right), the least common multiple of x+1,x+3,x+4.
x^{2}+7x+12+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0
Use the distributive property to multiply x+3 by x+4 and combine like terms.
x^{2}+7x+12+x^{2}+5x+4+\left(x+1\right)\left(x+3\right)=0
Use the distributive property to multiply x+1 by x+4 and combine like terms.
2x^{2}+7x+12+5x+4+\left(x+1\right)\left(x+3\right)=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x+12+4+\left(x+1\right)\left(x+3\right)=0
Combine 7x and 5x to get 12x.
2x^{2}+12x+16+\left(x+1\right)\left(x+3\right)=0
Add 12 and 4 to get 16.
2x^{2}+12x+16+x^{2}+4x+3=0
Use the distributive property to multiply x+1 by x+3 and combine like terms.
3x^{2}+12x+16+4x+3=0
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+16x+16+3=0
Combine 12x and 4x to get 16x.
3x^{2}+16x+19=0
Add 16 and 3 to get 19.
x=\frac{-16±\sqrt{16^{2}-4\times 3\times 19}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 16 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 3\times 19}}{2\times 3}
Square 16.
x=\frac{-16±\sqrt{256-12\times 19}}{2\times 3}
Multiply -4 times 3.
x=\frac{-16±\sqrt{256-228}}{2\times 3}
Multiply -12 times 19.
x=\frac{-16±\sqrt{28}}{2\times 3}
Add 256 to -228.
x=\frac{-16±2\sqrt{7}}{2\times 3}
Take the square root of 28.
x=\frac{-16±2\sqrt{7}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{7}-16}{6}
Now solve the equation x=\frac{-16±2\sqrt{7}}{6} when ± is plus. Add -16 to 2\sqrt{7}.
x=\frac{\sqrt{7}-8}{3}
Divide -16+2\sqrt{7} by 6.
x=\frac{-2\sqrt{7}-16}{6}
Now solve the equation x=\frac{-16±2\sqrt{7}}{6} when ± is minus. Subtract 2\sqrt{7} from -16.
x=\frac{-\sqrt{7}-8}{3}
Divide -16-2\sqrt{7} by 6.
x=\frac{\sqrt{7}-8}{3} x=\frac{-\sqrt{7}-8}{3}
The equation is now solved.
\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0
Variable x cannot be equal to any of the values -4,-3,-1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)\left(x+3\right)\left(x+4\right), the least common multiple of x+1,x+3,x+4.
x^{2}+7x+12+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+3\right)=0
Use the distributive property to multiply x+3 by x+4 and combine like terms.
x^{2}+7x+12+x^{2}+5x+4+\left(x+1\right)\left(x+3\right)=0
Use the distributive property to multiply x+1 by x+4 and combine like terms.
2x^{2}+7x+12+5x+4+\left(x+1\right)\left(x+3\right)=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+12x+12+4+\left(x+1\right)\left(x+3\right)=0
Combine 7x and 5x to get 12x.
2x^{2}+12x+16+\left(x+1\right)\left(x+3\right)=0
Add 12 and 4 to get 16.
2x^{2}+12x+16+x^{2}+4x+3=0
Use the distributive property to multiply x+1 by x+3 and combine like terms.
3x^{2}+12x+16+4x+3=0
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+16x+16+3=0
Combine 12x and 4x to get 16x.
3x^{2}+16x+19=0
Add 16 and 3 to get 19.
3x^{2}+16x=-19
Subtract 19 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}+16x}{3}=-\frac{19}{3}
Divide both sides by 3.
x^{2}+\frac{16}{3}x=-\frac{19}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=-\frac{19}{3}+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{3}x+\frac{64}{9}=-\frac{19}{3}+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{7}{9}
Add -\frac{19}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{8}{3}\right)^{2}=\frac{7}{9}
Factor x^{2}+\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{7}{9}}
Take the square root of both sides of the equation.
x+\frac{8}{3}=\frac{\sqrt{7}}{3} x+\frac{8}{3}=-\frac{\sqrt{7}}{3}
Simplify.
x=\frac{\sqrt{7}-8}{3} x=\frac{-\sqrt{7}-8}{3}
Subtract \frac{8}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}