Verify
false
Share
Copied to clipboard
\frac{1}{3}=\frac{2}{6}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{1}{3}=\frac{2+1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Since \frac{2}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{3}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Add 2 and 1 to get 3.
\frac{1}{3}=\frac{1}{2}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{3}=\frac{6}{12}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 2 and 12 is 12. Convert \frac{1}{2} and \frac{1}{12} to fractions with denominator 12.
\frac{1}{3}=\frac{6+1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Since \frac{6}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{7}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Add 6 and 1 to get 7.
\frac{1}{3}=\frac{14}{24}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 12 and 24 is 24. Convert \frac{7}{12} and \frac{1}{24} to fractions with denominator 24.
\frac{1}{3}=\frac{14+1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Since \frac{14}{24} and \frac{1}{24} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{15}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Add 14 and 1 to get 15.
\frac{1}{3}=\frac{5}{8}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
\frac{1}{3}=\frac{30}{48}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 8 and 48 is 48. Convert \frac{5}{8} and \frac{1}{48} to fractions with denominator 48.
\frac{1}{3}=\frac{30+1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Since \frac{30}{48} and \frac{1}{48} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{31}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Add 30 and 1 to get 31.
\frac{1}{3}=\frac{62}{96}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 48 and 96 is 96. Convert \frac{31}{48} and \frac{1}{96} to fractions with denominator 96.
\frac{1}{3}=\frac{62+1}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Since \frac{62}{96} and \frac{1}{96} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{63}{96}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Add 62 and 1 to get 63.
\frac{1}{3}=\frac{21}{32}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Reduce the fraction \frac{63}{96} to lowest terms by extracting and canceling out 3.
\frac{1}{3}=\frac{126}{192}+\frac{1}{192}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 32 and 192 is 192. Convert \frac{21}{32} and \frac{1}{192} to fractions with denominator 192.
\frac{1}{3}=\frac{126+1}{192}+\frac{1}{384}+\frac{1}{39}
Since \frac{126}{192} and \frac{1}{192} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{127}{192}+\frac{1}{384}+\frac{1}{39}
Add 126 and 1 to get 127.
\frac{1}{3}=\frac{254}{384}+\frac{1}{384}+\frac{1}{39}
Least common multiple of 192 and 384 is 384. Convert \frac{127}{192} and \frac{1}{384} to fractions with denominator 384.
\frac{1}{3}=\frac{254+1}{384}+\frac{1}{39}
Since \frac{254}{384} and \frac{1}{384} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{255}{384}+\frac{1}{39}
Add 254 and 1 to get 255.
\frac{1}{3}=\frac{85}{128}+\frac{1}{39}
Reduce the fraction \frac{255}{384} to lowest terms by extracting and canceling out 3.
\frac{1}{3}=\frac{3315}{4992}+\frac{128}{4992}
Least common multiple of 128 and 39 is 4992. Convert \frac{85}{128} and \frac{1}{39} to fractions with denominator 4992.
\frac{1}{3}=\frac{3315+128}{4992}
Since \frac{3315}{4992} and \frac{128}{4992} have the same denominator, add them by adding their numerators.
\frac{1}{3}=\frac{3443}{4992}
Add 3315 and 128 to get 3443.
\frac{1664}{4992}=\frac{3443}{4992}
Least common multiple of 3 and 4992 is 4992. Convert \frac{1}{3} and \frac{3443}{4992} to fractions with denominator 4992.
\text{false}
Compare \frac{1664}{4992} and \frac{3443}{4992}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}