Direkt zum Inhalt
Nach x auflösen
Tick mark Image
Diagramm

Ähnliche Aufgaben aus Websuche

Teilen

x^{2}-3x-28=0
Subtrahieren Sie 28 von beiden Seiten.
a+b=-3 ab=-28
Um die Gleichung zu lösen, faktorisieren Sie x^{2}-3x-28 mithilfe der Formel x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Um a und b zu finden, stellen Sie ein zu lösendes System auf.
1,-28 2,-14 4,-7
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b negativ ist, hat die negative Zahl einen größeren Absolutwert als die positive. Alle ganzzahligen Paare auflisten, die das Produkt -28 ergeben.
1-28=-27 2-14=-12 4-7=-3
Die Summe für jedes Paar berechnen.
a=-7 b=4
Die Lösung ist das Paar, das die Summe -3 ergibt.
\left(x-7\right)\left(x+4\right)
Schreiben Sie den faktorisierten Ausdruck "\left(x+a\right)\left(x+b\right)" mit den erhaltenen Werten um.
x=7 x=-4
Um Lösungen für die Gleichungen zu finden, lösen Sie x-7=0 und x+4=0.
x^{2}-3x-28=0
Subtrahieren Sie 28 von beiden Seiten.
a+b=-3 ab=1\left(-28\right)=-28
Um die Gleichung zu lösen, faktorisieren Sie die linke Seite durch Gruppieren. Zuerst muss die linke Seite als x^{2}+ax+bx-28 umgeschrieben werden. Um a und b zu finden, stellen Sie ein zu lösendes System auf.
1,-28 2,-14 4,-7
Weil ab negativ ist, haben a und b entgegengesetzte Vorzeichen. Weil a+b negativ ist, hat die negative Zahl einen größeren Absolutwert als die positive. Alle ganzzahligen Paare auflisten, die das Produkt -28 ergeben.
1-28=-27 2-14=-12 4-7=-3
Die Summe für jedes Paar berechnen.
a=-7 b=4
Die Lösung ist das Paar, das die Summe -3 ergibt.
\left(x^{2}-7x\right)+\left(4x-28\right)
x^{2}-3x-28 als \left(x^{2}-7x\right)+\left(4x-28\right) umschreiben.
x\left(x-7\right)+4\left(x-7\right)
Klammern Sie x in der ersten und 4 in der zweiten Gruppe aus.
\left(x-7\right)\left(x+4\right)
Klammern Sie den gemeinsamen Term x-7 aus, indem Sie die distributive Eigenschaft verwenden.
x=7 x=-4
Um Lösungen für die Gleichungen zu finden, lösen Sie x-7=0 und x+4=0.
x^{2}-3x=28
Alle Gleichungen der Form ax^{2}+bx+c=0 können mithilfe dieser quadratischen Gleichung gelöst werden: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Die quadratische Gleichung ergibt zwei Lösungen, eine für ± bei Addition und eine bei Subtraktion.
x^{2}-3x-28=28-28
28 von beiden Seiten der Gleichung subtrahieren.
x^{2}-3x-28=0
Die Subtraktion von 28 von sich selbst ergibt 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
Diese Gleichung hat die Standardform: ax^{2}+bx+c=0. Ersetzen Sie in der quadratischen Gleichung a durch 1, b durch -3 und c durch -28, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
-3 zum Quadrat.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
Multiplizieren Sie -4 mit -28.
x=\frac{-\left(-3\right)±\sqrt{121}}{2}
Addieren Sie 9 zu 112.
x=\frac{-\left(-3\right)±11}{2}
Ziehen Sie die Quadratwurzel aus 121.
x=\frac{3±11}{2}
Das Gegenteil von -3 ist 3.
x=\frac{14}{2}
Lösen Sie jetzt die Gleichung x=\frac{3±11}{2}, wenn ± positiv ist. Addieren Sie 3 zu 11.
x=7
Dividieren Sie 14 durch 2.
x=-\frac{8}{2}
Lösen Sie jetzt die Gleichung x=\frac{3±11}{2}, wenn ± negativ ist. Subtrahieren Sie 11 von 3.
x=-4
Dividieren Sie -8 durch 2.
x=7 x=-4
Die Gleichung ist jetzt gelöst.
x^{2}-3x=28
Quadratische Gleichungen wie diese können durch quadratische Ergänzung gelöst werden. Für die Anwendung der quadratischen Ergänzung muss die Gleichung zuerst in die Form x^{2}+bx=c gebracht werden.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
Dividieren Sie -3, den Koeffizienten des Terms x, durch 2, um -\frac{3}{2} zu erhalten. Addieren Sie dann das Quadrat von -\frac{3}{2} zu beiden Seiten der Gleichung. Dieser Schritt macht die linke Seite der Gleichung zu einem perfekten Quadrat.
x^{2}-3x+\frac{9}{4}=28+\frac{9}{4}
Bestimmen Sie das Quadrat von -\frac{3}{2}, indem Sie das Quadrat des Zählers und das Quadrat des Nenners des Bruchs bilden.
x^{2}-3x+\frac{9}{4}=\frac{121}{4}
Addieren Sie 28 zu \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{121}{4}
Faktor x^{2}-3x+\frac{9}{4}. Wenn es sich bei x^{2}+bx+c um ein perfektes Quadrat handelt, kann es immer in der Form von \left(x+\frac{b}{2}\right)^{2} faktorisiert werden.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Ziehen Sie die Quadratwurzel beider Seiten der Gleichung.
x-\frac{3}{2}=\frac{11}{2} x-\frac{3}{2}=-\frac{11}{2}
Vereinfachen.
x=7 x=-4
Addieren Sie \frac{3}{2} zu beiden Seiten der Gleichung.