Chuyển đến nội dung chính
Microsoft
|
Math Solver
Giải
Thực hành
Chơi
Các chủ đề
Tiền đại số
Trung bình
Số yếu vị
ước số chung lớn nhất
Bội số chung nhỏ nhất
Thứ tự các hoạt động
Phân số
Hỗn số
Nguyên tố
Số mũ
Căn thức
Đại số học
Kết hợp các số hạng đồng dạng
Giải cho một biến
Thừa số
Mở rộng
So sánh phân số
Các phương trình tuyến tính
Phương trình bậc hai
Các bất đẳng thức
Hệ phương trình
Ma trận
Lượng giác
Đơn giản hóa
ước lượng
đồ thị
Giải phương trình
Giải tích
đạo hàm
Tích phân
Giới hạn
Đầu vào đại số
Đầu vào lượng giác
Đầu vào tính toán
Đầu vào ma trận
Giải
Thực hành
Chơi
Các chủ đề
Tiền đại số
Trung bình
Số yếu vị
ước số chung lớn nhất
Bội số chung nhỏ nhất
Thứ tự các hoạt động
Phân số
Hỗn số
Nguyên tố
Số mũ
Căn thức
Đại số học
Kết hợp các số hạng đồng dạng
Giải cho một biến
Thừa số
Mở rộng
So sánh phân số
Các phương trình tuyến tính
Phương trình bậc hai
Các bất đẳng thức
Hệ phương trình
Ma trận
Lượng giác
Đơn giản hóa
ước lượng
đồ thị
Giải phương trình
Giải tích
đạo hàm
Tích phân
Giới hạn
Đầu vào đại số
Đầu vào lượng giác
Đầu vào tính toán
Đầu vào ma trận
Basic
đại số
lượng giác
Phép tính
Số liệu thống kê
Ma trận
Ký tự
Tìm x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Đồ thị
Vẽ đồ thị 2D cả hai bên
Vẽ đồ thị 2D
Bài kiểm tra
Trigonometry
5 bài toán tương tự với:
\sin ( x ) = \cos ( x )
Các bài toán tương tự từ Tìm kiếm web
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Thêm Mục
Chia sẻ
Sao chép
Đã sao chép vào bảng tạm
Những vấn đề tương tự
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Trở về đầu