Lấy vi phân theo x
-\sin(x)
Tính giá trị
\cos(x)
Đồ thị
Bài kiểm tra
Trigonometry
5 bài toán tương tự với:
\cos ( x )
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))=\left(\lim_{h\to 0}\frac{\cos(x+h)-\cos(x)}{h}\right)
Đối với hàm f\left(x\right), đạo hàm là giới hạn của \frac{f\left(x+h\right)-f\left(x\right)}{h} khi h tiến đến 0, nếu tồn tại giới hạn đó.
\lim_{h\to 0}\frac{\cos(x+h)-\cos(x)}{h}
Sử dụng Công thức Tổng cho Cosin.
\lim_{h\to 0}\frac{\cos(x)\left(\cos(h)-1\right)-\sin(x)\sin(h)}{h}
Phân tích \cos(x) thành thừa số.
\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Viết lại giới hạn.
\cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Sử dụng dữ kiện x là một hằng số để tính toán giới hạn khi h tiến đến 0.
\cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x)
Giới hạn của \lim_{x\to 0}\frac{\sin(x)}{x} là 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Để tính giá trị giới hạn \lim_{h\to 0}\frac{\cos(h)-1}{h}, trước tiên, hãy nhân tử số và mẫu số với \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Nhân \cos(h)+1 với \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Sử dụng Định lý Pitago.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Viết lại giới hạn.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Giới hạn của \lim_{x\to 0}\frac{\sin(x)}{x} là 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Sử dụng dữ kiện \frac{\sin(h)}{\cos(h)+1} liên tục tại 0.
-\sin(x)
Thay thế giá trị 0 vào biểu thức \cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x).
Những vấn đề tương tự
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )