Lấy vi phân theo x
-\frac{1}{\left(\sin(x)\right)^{2}}
Tính giá trị
\cot(x)
Đồ thị
Bài kiểm tra
Trigonometry
\cot ( x )
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\cos(x)}{\sin(x)})
Sử dụng định nghĩa cotang.
\frac{\sin(x)\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))-\cos(x)\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))}{\left(\sin(x)\right)^{2}}
Đối với hai hàm khả vi bất kỳ, đạo hàm của thương hai hàm bằng mẫu số nhân với đạo hàm của tử số trừ đi tử số nhân với đạo hàm của mẫu số, chia tất cả cho bình phương của mẫu số.
\frac{\sin(x)\left(-\sin(x)\right)-\cos(x)\cos(x)}{\left(\sin(x)\right)^{2}}
Đạo hàm của sin(x) là cos(x) và đạo hàm của cos(x) là −sin(x).
-\frac{\left(\sin(x)\right)^{2}+\left(\cos(x)\right)^{2}}{\left(\sin(x)\right)^{2}}
Rút gọn.
-\frac{1}{\left(\sin(x)\right)^{2}}
Sử dụng Định lý Pitago.
-\left(\csc(x)\right)^{2}
Sử dụng định nghĩa cosec.
Những vấn đề tương tự
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )