x uchun yechish (complex solution)
x=-3+\sqrt{11}i\approx -3+3,31662479i
x=-\sqrt{11}i-3\approx -3-3,31662479i
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x^{2}+12x+40=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 2\times 40}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 12 ni b va 40 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 2\times 40}}{2\times 2}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-8\times 40}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144-320}}{2\times 2}
-8 ni 40 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{-176}}{2\times 2}
144 ni -320 ga qo'shish.
x=\frac{-12±4\sqrt{11}i}{2\times 2}
-176 ning kvadrat ildizini chiqarish.
x=\frac{-12±4\sqrt{11}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{-12+4\sqrt{11}i}{4}
x=\frac{-12±4\sqrt{11}i}{4} tenglamasini yeching, bunda ± musbat. -12 ni 4i\sqrt{11} ga qo'shish.
x=-3+\sqrt{11}i
-12+4i\sqrt{11} ni 4 ga bo'lish.
x=\frac{-4\sqrt{11}i-12}{4}
x=\frac{-12±4\sqrt{11}i}{4} tenglamasini yeching, bunda ± manfiy. -12 dan 4i\sqrt{11} ni ayirish.
x=-\sqrt{11}i-3
-12-4i\sqrt{11} ni 4 ga bo'lish.
x=-3+\sqrt{11}i x=-\sqrt{11}i-3
Tenglama yechildi.
2x^{2}+12x+40=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
2x^{2}+12x+40-40=-40
Tenglamaning ikkala tarafidan 40 ni ayirish.
2x^{2}+12x=-40
O‘zidan 40 ayirilsa 0 qoladi.
\frac{2x^{2}+12x}{2}=-\frac{40}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{12}{2}x=-\frac{40}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+6x=-\frac{40}{2}
12 ni 2 ga bo'lish.
x^{2}+6x=-20
-40 ni 2 ga bo'lish.
x^{2}+6x+3^{2}=-20+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=-20+9
3 kvadratini chiqarish.
x^{2}+6x+9=-11
-20 ni 9 ga qo'shish.
\left(x+3\right)^{2}=-11
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-11}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{11}i x+3=-\sqrt{11}i
Qisqartirish.
x=-3+\sqrt{11}i x=-\sqrt{11}i-3
Tenglamaning ikkala tarafidan 3 ni ayirish.