Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2b+1\right)\times 2-\left(b-3\right)\times 6=4\left(b-3\right)\left(2b+1\right)
b qiymati -\frac{1}{2},3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(b-3\right)\left(2b+1\right) ga, b-3,2b+1 ning eng kichik karralisiga ko‘paytiring.
4b+2-\left(b-3\right)\times 6=4\left(b-3\right)\left(2b+1\right)
2b+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4b+2-\left(6b-18\right)=4\left(b-3\right)\left(2b+1\right)
b-3 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4b+2-6b+18=4\left(b-3\right)\left(2b+1\right)
6b-18 teskarisini topish uchun har birining teskarisini toping.
-2b+2+18=4\left(b-3\right)\left(2b+1\right)
-2b ni olish uchun 4b va -6b ni birlashtirish.
-2b+20=4\left(b-3\right)\left(2b+1\right)
20 olish uchun 2 va 18'ni qo'shing.
-2b+20=\left(4b-12\right)\left(2b+1\right)
4 ga b-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2b+20=8b^{2}-20b-12
4b-12 ga 2b+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-2b+20-8b^{2}=-20b-12
Ikkala tarafdan 8b^{2} ni ayirish.
-2b+20-8b^{2}+20b=-12
20b ni ikki tarafga qo’shing.
18b+20-8b^{2}=-12
18b ni olish uchun -2b va 20b ni birlashtirish.
18b+20-8b^{2}+12=0
12 ni ikki tarafga qo’shing.
18b+32-8b^{2}=0
32 olish uchun 20 va 12'ni qo'shing.
-8b^{2}+18b+32=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
b=\frac{-18±\sqrt{18^{2}-4\left(-8\right)\times 32}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 18 ni b va 32 ni c bilan almashtiring.
b=\frac{-18±\sqrt{324-4\left(-8\right)\times 32}}{2\left(-8\right)}
18 kvadratini chiqarish.
b=\frac{-18±\sqrt{324+32\times 32}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
b=\frac{-18±\sqrt{324+1024}}{2\left(-8\right)}
32 ni 32 marotabaga ko'paytirish.
b=\frac{-18±\sqrt{1348}}{2\left(-8\right)}
324 ni 1024 ga qo'shish.
b=\frac{-18±2\sqrt{337}}{2\left(-8\right)}
1348 ning kvadrat ildizini chiqarish.
b=\frac{-18±2\sqrt{337}}{-16}
2 ni -8 marotabaga ko'paytirish.
b=\frac{2\sqrt{337}-18}{-16}
b=\frac{-18±2\sqrt{337}}{-16} tenglamasini yeching, bunda ± musbat. -18 ni 2\sqrt{337} ga qo'shish.
b=\frac{9-\sqrt{337}}{8}
-18+2\sqrt{337} ni -16 ga bo'lish.
b=\frac{-2\sqrt{337}-18}{-16}
b=\frac{-18±2\sqrt{337}}{-16} tenglamasini yeching, bunda ± manfiy. -18 dan 2\sqrt{337} ni ayirish.
b=\frac{\sqrt{337}+9}{8}
-18-2\sqrt{337} ni -16 ga bo'lish.
b=\frac{9-\sqrt{337}}{8} b=\frac{\sqrt{337}+9}{8}
Tenglama yechildi.
\left(2b+1\right)\times 2-\left(b-3\right)\times 6=4\left(b-3\right)\left(2b+1\right)
b qiymati -\frac{1}{2},3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(b-3\right)\left(2b+1\right) ga, b-3,2b+1 ning eng kichik karralisiga ko‘paytiring.
4b+2-\left(b-3\right)\times 6=4\left(b-3\right)\left(2b+1\right)
2b+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4b+2-\left(6b-18\right)=4\left(b-3\right)\left(2b+1\right)
b-3 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4b+2-6b+18=4\left(b-3\right)\left(2b+1\right)
6b-18 teskarisini topish uchun har birining teskarisini toping.
-2b+2+18=4\left(b-3\right)\left(2b+1\right)
-2b ni olish uchun 4b va -6b ni birlashtirish.
-2b+20=4\left(b-3\right)\left(2b+1\right)
20 olish uchun 2 va 18'ni qo'shing.
-2b+20=\left(4b-12\right)\left(2b+1\right)
4 ga b-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2b+20=8b^{2}-20b-12
4b-12 ga 2b+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-2b+20-8b^{2}=-20b-12
Ikkala tarafdan 8b^{2} ni ayirish.
-2b+20-8b^{2}+20b=-12
20b ni ikki tarafga qo’shing.
18b+20-8b^{2}=-12
18b ni olish uchun -2b va 20b ni birlashtirish.
18b-8b^{2}=-12-20
Ikkala tarafdan 20 ni ayirish.
18b-8b^{2}=-32
-32 olish uchun -12 dan 20 ni ayirish.
-8b^{2}+18b=-32
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-8b^{2}+18b}{-8}=-\frac{32}{-8}
Ikki tarafini -8 ga bo‘ling.
b^{2}+\frac{18}{-8}b=-\frac{32}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
b^{2}-\frac{9}{4}b=-\frac{32}{-8}
\frac{18}{-8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b^{2}-\frac{9}{4}b=4
-32 ni -8 ga bo'lish.
b^{2}-\frac{9}{4}b+\left(-\frac{9}{8}\right)^{2}=4+\left(-\frac{9}{8}\right)^{2}
-\frac{9}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{8} olish uchun. Keyin, -\frac{9}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
b^{2}-\frac{9}{4}b+\frac{81}{64}=4+\frac{81}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{8} kvadratini chiqarish.
b^{2}-\frac{9}{4}b+\frac{81}{64}=\frac{337}{64}
4 ni \frac{81}{64} ga qo'shish.
\left(b-\frac{9}{8}\right)^{2}=\frac{337}{64}
b^{2}-\frac{9}{4}b+\frac{81}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(b-\frac{9}{8}\right)^{2}}=\sqrt{\frac{337}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b-\frac{9}{8}=\frac{\sqrt{337}}{8} b-\frac{9}{8}=-\frac{\sqrt{337}}{8}
Qisqartirish.
b=\frac{\sqrt{337}+9}{8} b=\frac{9-\sqrt{337}}{8}
\frac{9}{8} ni tenglamaning ikkala tarafiga qo'shish.