Hoppa till huvudinnehåll
Microsoft
|
Math Solver
Lösa
Praktik
Leka
Ämnen
Före Algebra
Betyda
Läge
Största gemensamma faktorn
Minst vanliga flera
Verksamhetsordning
Fraktioner
Blandade fraktioner
Främsta factorization
Exponenter
Radikaler
Algebra
Kombinera som termer
Lös för en variabel
Faktor
Expandera
Utvärdera bråktal
Linjära ekvationer
Kvadratiska ekvationer
Ojämlikhet
System av ekvationer
Matriser
Trigonometri
Förenkla
Evaluera
Grafer
Lös ekvationer
Kalkyl
Derivat
Integraler
Gränser
Ingångar för algebra
Trigonometriska ingångar
Ingångar för analys
Matris ingångar
Lösa
Praktik
Leka
Ämnen
Före Algebra
Betyda
Läge
Största gemensamma faktorn
Minst vanliga flera
Verksamhetsordning
Fraktioner
Blandade fraktioner
Främsta factorization
Exponenter
Radikaler
Algebra
Kombinera som termer
Lös för en variabel
Faktor
Expandera
Utvärdera bråktal
Linjära ekvationer
Kvadratiska ekvationer
Ojämlikhet
System av ekvationer
Matriser
Trigonometri
Förenkla
Evaluera
Grafer
Lös ekvationer
Kalkyl
Derivat
Integraler
Gränser
Ingångar för algebra
Trigonometriska ingångar
Ingångar för analys
Matris ingångar
Grundläggande
algebra
trigonometri
kalkyl
statistik
Matriser
Tecken
Lös ut x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graf
Rita båda leden i 2D
Rita i 2D
Frågesport
Trigonometry
\sin ( x ) = \cos ( x )
Liknande problem från webbsökning
How to solve equations like 2 \sin(x) = \cos(x)
https://math.stackexchange.com/questions/1476944/how-to-solve-equations-like-2-sinx-cosx/1476973
One way can be using tan\frac x2=t so sin x=\frac{2t}{1+t^2} and cos x=\frac{1-t^2}{1+t^2}. Here 2sin x= cos x implies t^2+4t-1=0 from wich tan \frac x2=2\pm\sqrt{5}.Hence the answer of ...
How do you show that the equation \displaystyle{1}-{\sin{{x}}}={\cos{{x}}} is not an identity?
https://socratic.org/questions/how-do-you-show-that-the-equation-1-sinx-cosx-is-not-an-identity
Bdub Nov 12, 2016 Pick a value for x like \displaystyle\frac{\pi}{{3}} and plug it in to both side to show that they don't equal each other and therefore not an identity
How do you solve \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}} ?
https://socratic.org/questions/how-do-you-solve-1-sin-x-cos-x
\displaystyle{x}={0} Explanation: \displaystyle{1}+{\sin{{\left({x}\right)}}}={\cos{{\left({x}\right)}}}{\quad\text{or}\quad}{\cos{{x}}}-{\sin{{x}}}={1} . Squaring both sides we get \displaystyle{\left({\cos{{x}}}-{\sin{{x}}}\right)}^{{2}}={1}{\quad\text{or}\quad}{{\cos}^{{2}}{x}}+{{\sin}^{{2}}{x}}-{2}{\sin{{x}}}{\cos{{x}}}={1}{\quad\text{or}\quad}{1}-{\sin{{2}}}{x}={1}{\quad\text{or}\quad}{\sin{{2}}}{x}={0}={\sin{{0}}}; ...
Trigonometric equation \sin2x=\cos x
https://math.stackexchange.com/questions/3008492/trigonometric-equation-sin2x-cos-x
As @Nicholas Stull hinted, you lost solutions by not making sure that you were not dividing by zero. As @Winther pointed out, you can avoid this error by factoring. As @Nicholas Stull pointed out, ...
Is there a deeper understanding of the derivative of sin(x) = cos(x)?
https://math.stackexchange.com/q/2454114
Apropos "deeper way": 1) f(x) = f(-x), even fct. Examples: y=x^2, y=cos(x) f'(x) = -f'(-x), chain rule, odd fct. 2) f(x)=-f(-x), odd fct. Examples: y=x^3, y=sin(x). f'(x) = f'(-x), ...
Maximum area of a rectangle inscribed in the cos(x) function
https://math.stackexchange.com/q/2212333
Equations like x= \cos x or x=\cot x generally don't have algebraic solutions. As such, we would first want to note that such an x exists (e.g., by the Intermediate Value Theorem) and then use ...
Fler Objekt
Aktie
Kopia
Kopieras till Urklipp
Liknande problem
\tan ( x )
\sec ( x )
\sin ( x ) = \cos ( x )
\cot ( x )
\cos ( x )
\csc ( x )
Tillbaka till toppen