Derivera m.a.p. x
-\sin(x)
Beräkna
\cos(x)
Graf
Frågesport
Trigonometry
\cos ( x )
Aktie
Kopieras till Urklipp
\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x))=\left(\lim_{h\to 0}\frac{\cos(x+h)-\cos(x)}{h}\right)
För en funktion, f\left(x\right), är derivatan gränsvärdet för \frac{f\left(x+h\right)-f\left(x\right)}{h} då h går mot 0, om gränsvärdet existerar.
\lim_{h\to 0}\frac{\cos(x+h)-\cos(x)}{h}
Använd additionsformeln för cosinus.
\lim_{h\to 0}\frac{\cos(x)\left(\cos(h)-1\right)-\sin(x)\sin(h)}{h}
Bryt ut \cos(x).
\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Skriv om gränsvärdet.
\cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Använd det faktum att x är en konstant vid beräkning av gränsvärden när h går mot 0.
\cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x)
Gränsvärdet för \lim_{x\to 0}\frac{\sin(x)}{x} är 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Du beräknar gränsvärdet \lim_{h\to 0}\frac{\cos(h)-1}{h} genom att först multiplicera täljare och nämnare med \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiplicera \cos(h)+1 med \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Använd trigonometriska ettan.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Skriv om gränsvärdet.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Gränsvärdet för \lim_{x\to 0}\frac{\sin(x)}{x} är 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Använd det faktum att \frac{\sin(h)}{\cos(h)+1} är kontinuerlig vid 0.
-\sin(x)
Sätt in värdet 0 i uttrycket \cos(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)-\sin(x).