Rozwiąż względem y (complex solution)
y=\frac{x^{2}}{x^{2}-1}
x\neq -1\text{ and }x\neq 1
Rozwiąż względem y
y=\frac{x^{2}}{x^{2}-1}
|x|\neq 1
Rozwiąż względem x (complex solution)
x=-\left(y-1\right)^{-\frac{1}{2}}\sqrt{y}
x=\left(y-1\right)^{-\frac{1}{2}}\sqrt{y}\text{, }y\neq 1
Rozwiąż względem x
x=\sqrt{\frac{y}{y-1}}
x=-\sqrt{\frac{y}{y-1}}\text{, }y>1\text{ or }y\leq 0
Wykres
Udostępnij
Skopiowano do schowka
\left(x-1\right)\left(x+1\right)y+\left(x-1\right)\left(x+1\right)\left(-1\right)=1
Pomnóż obie strony równania przez \left(x-1\right)\left(x+1\right).
\left(x^{2}-1\right)y+\left(x-1\right)\left(x+1\right)\left(-1\right)=1
Rozważ \left(x-1\right)\left(x+1\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu 1.
x^{2}y-y+\left(x-1\right)\left(x+1\right)\left(-1\right)=1
Użyj właściwości rozdzielności, aby pomnożyć x^{2}-1 przez y.
x^{2}y-y+\left(x^{2}-1\right)\left(-1\right)=1
Użyj właściwości rozdzielności, aby pomnożyć x-1 przez x+1 i połączyć podobne czynniki.
x^{2}y-y-x^{2}+1=1
Użyj właściwości rozdzielności, aby pomnożyć x^{2}-1 przez -1.
x^{2}y-y+1=1+x^{2}
Dodaj x^{2} do obu stron.
x^{2}y-y=1+x^{2}-1
Odejmij 1 od obu stron.
x^{2}y-y=x^{2}
Odejmij 1 od 1, aby uzyskać 0.
\left(x^{2}-1\right)y=x^{2}
Połącz wszystkie czynniki zawierające y.
\frac{\left(x^{2}-1\right)y}{x^{2}-1}=\frac{x^{2}}{x^{2}-1}
Podziel obie strony przez x^{2}-1.
y=\frac{x^{2}}{x^{2}-1}
Dzielenie przez x^{2}-1 cofa mnożenie przez x^{2}-1.
\left(x-1\right)\left(x+1\right)y+\left(x-1\right)\left(x+1\right)\left(-1\right)=1
Pomnóż obie strony równania przez \left(x-1\right)\left(x+1\right).
\left(x^{2}-1\right)y+\left(x-1\right)\left(x+1\right)\left(-1\right)=1
Rozważ \left(x-1\right)\left(x+1\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu 1.
x^{2}y-y+\left(x-1\right)\left(x+1\right)\left(-1\right)=1
Użyj właściwości rozdzielności, aby pomnożyć x^{2}-1 przez y.
x^{2}y-y+\left(x^{2}-1\right)\left(-1\right)=1
Użyj właściwości rozdzielności, aby pomnożyć x-1 przez x+1 i połączyć podobne czynniki.
x^{2}y-y-x^{2}+1=1
Użyj właściwości rozdzielności, aby pomnożyć x^{2}-1 przez -1.
x^{2}y-y+1=1+x^{2}
Dodaj x^{2} do obu stron.
x^{2}y-y=1+x^{2}-1
Odejmij 1 od obu stron.
x^{2}y-y=x^{2}
Odejmij 1 od 1, aby uzyskać 0.
\left(x^{2}-1\right)y=x^{2}
Połącz wszystkie czynniki zawierające y.
\frac{\left(x^{2}-1\right)y}{x^{2}-1}=\frac{x^{2}}{x^{2}-1}
Podziel obie strony przez x^{2}-1.
y=\frac{x^{2}}{x^{2}-1}
Dzielenie przez x^{2}-1 cofa mnożenie przez x^{2}-1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}