Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

y^{2}+3y-21=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
y=\frac{-3±\sqrt{3^{2}-4\left(-21\right)}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
y=\frac{-3±\sqrt{9-4\left(-21\right)}}{2}
Podnieś do kwadratu 3.
y=\frac{-3±\sqrt{9+84}}{2}
Pomnóż -4 przez -21.
y=\frac{-3±\sqrt{93}}{2}
Dodaj 9 do 84.
y=\frac{\sqrt{93}-3}{2}
Teraz rozwiąż równanie y=\frac{-3±\sqrt{93}}{2} dla operatora ± będącego plusem. Dodaj -3 do \sqrt{93}.
y=\frac{-\sqrt{93}-3}{2}
Teraz rozwiąż równanie y=\frac{-3±\sqrt{93}}{2} dla operatora ± będącego minusem. Odejmij \sqrt{93} od -3.
y^{2}+3y-21=\left(y-\frac{\sqrt{93}-3}{2}\right)\left(y-\frac{-\sqrt{93}-3}{2}\right)
Rozłóż oryginalne wyrażenie na czynniki przy użyciu wyrażenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Podstaw \frac{-3+\sqrt{93}}{2} za x_{1} i \frac{-3-\sqrt{93}}{2} za x_{2}.