Rozwiąż względem x
x=-\frac{4y}{3}+\frac{1}{2}
Rozwiąż względem y
y=-\frac{3x}{4}+\frac{3}{8}
Wykres
Udostępnij
Skopiowano do schowka
y=\frac{-3}{2\times 2}\left(x-\frac{1}{2}\right)+0
Pokaż wartość \frac{-\frac{3}{2}}{2} jako pojedynczy ułamek.
y=\frac{-3}{4}\left(x-\frac{1}{2}\right)+0
Pomnóż 2 przez 2, aby uzyskać 4.
y=-\frac{3}{4}\left(x-\frac{1}{2}\right)+0
Ułamek \frac{-3}{4} można zapisać jako -\frac{3}{4} przez wyciągnięcie znaku minus.
y=-\frac{3}{4}x+\frac{3}{8}+0
Użyj właściwości rozdzielności, aby pomnożyć -\frac{3}{4} przez x-\frac{1}{2}.
y=-\frac{3}{4}x+\frac{3}{8}
Dodaj \frac{3}{8} i 0, aby uzyskać \frac{3}{8}.
-\frac{3}{4}x+\frac{3}{8}=y
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
-\frac{3}{4}x=y-\frac{3}{8}
Odejmij \frac{3}{8} od obu stron.
\frac{-\frac{3}{4}x}{-\frac{3}{4}}=\frac{y-\frac{3}{8}}{-\frac{3}{4}}
Podziel obie strony równania przez -\frac{3}{4}, co jest równoważne pomnożeniu obu stron przez odwrotność ułamka.
x=\frac{y-\frac{3}{8}}{-\frac{3}{4}}
Dzielenie przez -\frac{3}{4} cofa mnożenie przez -\frac{3}{4}.
x=-\frac{4y}{3}+\frac{1}{2}
Podziel y-\frac{3}{8} przez -\frac{3}{4}, mnożąc y-\frac{3}{8} przez odwrotność -\frac{3}{4}.
y=\frac{-3}{2\times 2}\left(x-\frac{1}{2}\right)+0
Pokaż wartość \frac{-\frac{3}{2}}{2} jako pojedynczy ułamek.
y=\frac{-3}{4}\left(x-\frac{1}{2}\right)+0
Pomnóż 2 przez 2, aby uzyskać 4.
y=-\frac{3}{4}\left(x-\frac{1}{2}\right)+0
Ułamek \frac{-3}{4} można zapisać jako -\frac{3}{4} przez wyciągnięcie znaku minus.
y=-\frac{3}{4}x+\frac{3}{8}+0
Użyj właściwości rozdzielności, aby pomnożyć -\frac{3}{4} przez x-\frac{1}{2}.
y=-\frac{3}{4}x+\frac{3}{8}
Dodaj \frac{3}{8} i 0, aby uzyskać \frac{3}{8}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}