Rozwiąż względem x (complex solution)
x=-1
x=2
x=\frac{-\sqrt{11}i-1}{2}\approx -0,5-1,658312395i
x=\frac{-1+\sqrt{11}i}{2}\approx -0,5+1,658312395i
Rozwiąż względem x
x=2
x=-1
Wykres
Udostępnij
Skopiowano do schowka
±6,±3,±2,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -6, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=-1
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{3}-x^{2}+x-6=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{4}-5x-6 przez x+1, aby uzyskać x^{3}-x^{2}+x-6. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
±6,±3,±2,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -6, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=2
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{2}+x+3=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{3}-x^{2}+x-6 przez x-2, aby uzyskać x^{2}+x+3. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 3}}{2}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 1 do a, 1 do b i 3 do c w formule kwadratowej.
x=\frac{-1±\sqrt{-11}}{2}
Wykonaj obliczenia.
x=\frac{-\sqrt{11}i-1}{2} x=\frac{-1+\sqrt{11}i}{2}
Umożliwia rozwiązanie równania x^{2}+x+3=0, gdy ± jest Plus i gdy ± jest pomniejszona.
x=-1 x=2 x=\frac{-\sqrt{11}i-1}{2} x=\frac{-1+\sqrt{11}i}{2}
Wyświetl listę wszystkich znalezionych rozwiązań.
±6,±3,±2,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -6, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=-1
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{3}-x^{2}+x-6=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{4}-5x-6 przez x+1, aby uzyskać x^{3}-x^{2}+x-6. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
±6,±3,±2,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -6, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=2
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{2}+x+3=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{3}-x^{2}+x-6 przez x-2, aby uzyskać x^{2}+x+3. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\times 3}}{2}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 1 do a, 1 do b i 3 do c w formule kwadratowej.
x=\frac{-1±\sqrt{-11}}{2}
Wykonaj obliczenia.
x\in \emptyset
Pierwiastek kwadratowy liczby ujemnej nie jest zdefiniowany w ciele liczb rzeczywistych, dlatego nie ma rozwiązań.
x=-1 x=2
Wyświetl listę wszystkich znalezionych rozwiązań.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}