Przejdź do głównej zawartości
Rozwiąż względem x (complex solution)
Tick mark Image
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{4}=4x^{2}-12x+9
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(2x-3\right)^{2}.
x^{4}-4x^{2}=-12x+9
Odejmij 4x^{2} od obu stron.
x^{4}-4x^{2}+12x=9
Dodaj 12x do obu stron.
x^{4}-4x^{2}+12x-9=0
Odejmij 9 od obu stron.
±9,±3,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -9, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=1
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{3}+x^{2}-3x+9=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{4}-4x^{2}+12x-9 przez x-1, aby uzyskać x^{3}+x^{2}-3x+9. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
±9,±3,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 9, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=-3
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{2}-2x+3=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{3}+x^{2}-3x+9 przez x+3, aby uzyskać x^{2}-2x+3. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 1 do a, -2 do b i 3 do c w formule kwadratowej.
x=\frac{2±\sqrt{-8}}{2}
Wykonaj obliczenia.
x=-\sqrt{2}i+1 x=1+\sqrt{2}i
Umożliwia rozwiązanie równania x^{2}-2x+3=0, gdy ± jest Plus i gdy ± jest pomniejszona.
x=1 x=-3 x=-\sqrt{2}i+1 x=1+\sqrt{2}i
Wyświetl listę wszystkich znalezionych rozwiązań.
x^{4}=4x^{2}-12x+9
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(2x-3\right)^{2}.
x^{4}-4x^{2}=-12x+9
Odejmij 4x^{2} od obu stron.
x^{4}-4x^{2}+12x=9
Dodaj 12x do obu stron.
x^{4}-4x^{2}+12x-9=0
Odejmij 9 od obu stron.
±9,±3,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -9, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=1
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{3}+x^{2}-3x+9=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{4}-4x^{2}+12x-9 przez x-1, aby uzyskać x^{3}+x^{2}-3x+9. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
±9,±3,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 9, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=-3
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{2}-2x+3=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{3}+x^{2}-3x+9 przez x+3, aby uzyskać x^{2}-2x+3. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 3}}{2}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 1 do a, -2 do b i 3 do c w formule kwadratowej.
x=\frac{2±\sqrt{-8}}{2}
Wykonaj obliczenia.
x\in \emptyset
Pierwiastek kwadratowy liczby ujemnej nie jest zdefiniowany w ciele liczb rzeczywistych, dlatego nie ma rozwiązań.
x=1 x=-3
Wyświetl listę wszystkich znalezionych rozwiązań.