Rozwiąż względem k
k=-\frac{x^{3}-12}{x^{2}+4}
Wykres
Udostępnij
Skopiowano do schowka
kx^{2}+4k-16=-4-x^{3}
Odejmij x^{3} od obu stron.
kx^{2}+4k=-4-x^{3}+16
Dodaj 16 do obu stron.
kx^{2}+4k=12-x^{3}
Dodaj -4 i 16, aby uzyskać 12.
\left(x^{2}+4\right)k=12-x^{3}
Połącz wszystkie czynniki zawierające k.
\frac{\left(x^{2}+4\right)k}{x^{2}+4}=\frac{12-x^{3}}{x^{2}+4}
Podziel obie strony przez x^{2}+4.
k=\frac{12-x^{3}}{x^{2}+4}
Dzielenie przez x^{2}+4 cofa mnożenie przez x^{2}+4.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}