Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\left(x+7\right)\left(x^{2}-5x-6\right)
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -42, a q jest dzielnikiem współczynnika wiodącego 1. Jeden z tych pierwiastków wynosi -7. Rozłóż wielomian na czynniki, dzieląc go przez x+7.
a+b=-5 ab=1\left(-6\right)=-6
Rozważ x^{2}-5x-6. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx-6. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-6 2,-3
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -6.
1-6=-5 2-3=-1
Oblicz sumę dla każdej pary.
a=-6 b=1
Rozwiązanie to para, która daje sumę -5.
\left(x^{2}-6x\right)+\left(x-6\right)
Przepisz x^{2}-5x-6 jako \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
Wyłącz przed nawias x w x^{2}-6x.
\left(x-6\right)\left(x+1\right)
Wyłącz przed nawias wspólny czynnik x-6, używając właściwości rozdzielności.
\left(x-6\right)\left(x+1\right)\left(x+7\right)
Przepisz całe wyrażenie rozłożone na czynniki.