Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-7 ab=10
Aby rozwiązać równanie, rozłóż x^{2}-7x+10 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-10 -2,-5
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 10.
-1-10=-11 -2-5=-7
Oblicz sumę dla każdej pary.
a=-5 b=-2
Rozwiązanie to para, która daje sumę -7.
\left(x-5\right)\left(x-2\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=5 x=2
Aby znaleźć rozwiązania równań, rozwiąż: x-5=0 i x-2=0.
a+b=-7 ab=1\times 10=10
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+10. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-10 -2,-5
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 10.
-1-10=-11 -2-5=-7
Oblicz sumę dla każdej pary.
a=-5 b=-2
Rozwiązanie to para, która daje sumę -7.
\left(x^{2}-5x\right)+\left(-2x+10\right)
Przepisz x^{2}-7x+10 jako \left(x^{2}-5x\right)+\left(-2x+10\right).
x\left(x-5\right)-2\left(x-5\right)
x w pierwszej i -2 w drugiej grupie.
\left(x-5\right)\left(x-2\right)
Wyłącz przed nawias wspólny czynnik x-5, używając właściwości rozdzielności.
x=5 x=2
Aby znaleźć rozwiązania równań, rozwiąż: x-5=0 i x-2=0.
x^{2}-7x+10=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 10}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -7 do b i 10 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 10}}{2}
Podnieś do kwadratu -7.
x=\frac{-\left(-7\right)±\sqrt{49-40}}{2}
Pomnóż -4 przez 10.
x=\frac{-\left(-7\right)±\sqrt{9}}{2}
Dodaj 49 do -40.
x=\frac{-\left(-7\right)±3}{2}
Oblicz pierwiastek kwadratowy wartości 9.
x=\frac{7±3}{2}
Liczba przeciwna do -7 to 7.
x=\frac{10}{2}
Teraz rozwiąż równanie x=\frac{7±3}{2} dla operatora ± będącego plusem. Dodaj 7 do 3.
x=5
Podziel 10 przez 2.
x=\frac{4}{2}
Teraz rozwiąż równanie x=\frac{7±3}{2} dla operatora ± będącego minusem. Odejmij 3 od 7.
x=2
Podziel 4 przez 2.
x=5 x=2
Równanie jest teraz rozwiązane.
x^{2}-7x+10=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
x^{2}-7x+10-10=-10
Odejmij 10 od obu stron równania.
x^{2}-7x=-10
Odjęcie 10 od tej samej wartości pozostawia wartość 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
Podziel -7, współczynnik x terminu, 2, aby uzyskać -\frac{7}{2}. Następnie Dodaj kwadrat -\frac{7}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Podnieś do kwadratu -\frac{7}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
Dodaj -10 do \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
Współczynnik x^{2}-7x+\frac{49}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Uprość.
x=5 x=2
Dodaj \frac{7}{2} do obu stron równania.