Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{2}-6x-27=0
Odejmij 27 od obu stron.
a+b=-6 ab=-27
Aby rozwiązać równanie, rozłóż x^{2}-6x-27 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-27 3,-9
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -27.
1-27=-26 3-9=-6
Oblicz sumę dla każdej pary.
a=-9 b=3
Rozwiązanie to para, która daje sumę -6.
\left(x-9\right)\left(x+3\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=9 x=-3
Aby znaleźć rozwiązania równań, rozwiąż: x-9=0 i x+3=0.
x^{2}-6x-27=0
Odejmij 27 od obu stron.
a+b=-6 ab=1\left(-27\right)=-27
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx-27. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-27 3,-9
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -27.
1-27=-26 3-9=-6
Oblicz sumę dla każdej pary.
a=-9 b=3
Rozwiązanie to para, która daje sumę -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Przepisz x^{2}-6x-27 jako \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
x w pierwszej i 3 w drugiej grupie.
\left(x-9\right)\left(x+3\right)
Wyłącz przed nawias wspólny czynnik x-9, używając właściwości rozdzielności.
x=9 x=-3
Aby znaleźć rozwiązania równań, rozwiąż: x-9=0 i x+3=0.
x^{2}-6x=27
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x^{2}-6x-27=27-27
Odejmij 27 od obu stron równania.
x^{2}-6x-27=0
Odjęcie 27 od tej samej wartości pozostawia wartość 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -6 do b i -27 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Podnieś do kwadratu -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Pomnóż -4 przez -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Dodaj 36 do 108.
x=\frac{-\left(-6\right)±12}{2}
Oblicz pierwiastek kwadratowy wartości 144.
x=\frac{6±12}{2}
Liczba przeciwna do -6 to 6.
x=\frac{18}{2}
Teraz rozwiąż równanie x=\frac{6±12}{2} dla operatora ± będącego plusem. Dodaj 6 do 12.
x=9
Podziel 18 przez 2.
x=-\frac{6}{2}
Teraz rozwiąż równanie x=\frac{6±12}{2} dla operatora ± będącego minusem. Odejmij 12 od 6.
x=-3
Podziel -6 przez 2.
x=9 x=-3
Równanie jest teraz rozwiązane.
x^{2}-6x=27
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
Podziel -6, współczynnik x terminu, 2, aby uzyskać -3. Następnie Dodaj kwadrat -3 do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-6x+9=27+9
Podnieś do kwadratu -3.
x^{2}-6x+9=36
Dodaj 27 do 9.
\left(x-3\right)^{2}=36
Współczynnik x^{2}-6x+9. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
Oblicz pierwiastek kwadratowy obu stron równania.
x-3=6 x-3=-6
Uprość.
x=9 x=-3
Dodaj 3 do obu stron równania.