Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-6 ab=1\times 8=8
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx+8. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-8 -2,-4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 8.
-1-8=-9 -2-4=-6
Oblicz sumę dla każdej pary.
a=-4 b=-2
Rozwiązanie to para, która daje sumę -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Przepisz x^{2}-6x+8 jako \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
x w pierwszej i -2 w drugiej grupie.
\left(x-4\right)\left(x-2\right)
Wyłącz przed nawias wspólny czynnik x-4, używając właściwości rozdzielności.
x^{2}-6x+8=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Podnieś do kwadratu -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Pomnóż -4 przez 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Dodaj 36 do -32.
x=\frac{-\left(-6\right)±2}{2}
Oblicz pierwiastek kwadratowy wartości 4.
x=\frac{6±2}{2}
Liczba przeciwna do -6 to 6.
x=\frac{8}{2}
Teraz rozwiąż równanie x=\frac{6±2}{2} dla operatora ± będącego plusem. Dodaj 6 do 2.
x=4
Podziel 8 przez 2.
x=\frac{4}{2}
Teraz rozwiąż równanie x=\frac{6±2}{2} dla operatora ± będącego minusem. Odejmij 2 od 6.
x=2
Podziel 4 przez 2.
x^{2}-6x+8=\left(x-4\right)\left(x-2\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 4 za x_{1}, a wartość 2 za x_{2}.