Rozwiąż względem x
x=4
x=6
Wykres
Udostępnij
Skopiowano do schowka
x^{2}-12x+19+2x=-5
Dodaj 2x do obu stron.
x^{2}-10x+19=-5
Połącz -12x i 2x, aby uzyskać -10x.
x^{2}-10x+19+5=0
Dodaj 5 do obu stron.
x^{2}-10x+24=0
Dodaj 19 i 5, aby uzyskać 24.
a+b=-10 ab=24
Aby rozwiązać równanie, rozłóż x^{2}-10x+24 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-24 -2,-12 -3,-8 -4,-6
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Oblicz sumę dla każdej pary.
a=-6 b=-4
Rozwiązanie to para, która daje sumę -10.
\left(x-6\right)\left(x-4\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=6 x=4
Aby znaleźć rozwiązania równań, rozwiąż: x-6=0 i x-4=0.
x^{2}-12x+19+2x=-5
Dodaj 2x do obu stron.
x^{2}-10x+19=-5
Połącz -12x i 2x, aby uzyskać -10x.
x^{2}-10x+19+5=0
Dodaj 5 do obu stron.
x^{2}-10x+24=0
Dodaj 19 i 5, aby uzyskać 24.
a+b=-10 ab=1\times 24=24
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+24. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-24 -2,-12 -3,-8 -4,-6
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Oblicz sumę dla każdej pary.
a=-6 b=-4
Rozwiązanie to para, która daje sumę -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Przepisz x^{2}-10x+24 jako \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
x w pierwszej i -4 w drugiej grupie.
\left(x-6\right)\left(x-4\right)
Wyłącz przed nawias wspólny czynnik x-6, używając właściwości rozdzielności.
x=6 x=4
Aby znaleźć rozwiązania równań, rozwiąż: x-6=0 i x-4=0.
x^{2}-12x+19+2x=-5
Dodaj 2x do obu stron.
x^{2}-10x+19=-5
Połącz -12x i 2x, aby uzyskać -10x.
x^{2}-10x+19+5=0
Dodaj 5 do obu stron.
x^{2}-10x+24=0
Dodaj 19 i 5, aby uzyskać 24.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -10 do b i 24 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Podnieś do kwadratu -10.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Pomnóż -4 przez 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Dodaj 100 do -96.
x=\frac{-\left(-10\right)±2}{2}
Oblicz pierwiastek kwadratowy wartości 4.
x=\frac{10±2}{2}
Liczba przeciwna do -10 to 10.
x=\frac{12}{2}
Teraz rozwiąż równanie x=\frac{10±2}{2} dla operatora ± będącego plusem. Dodaj 10 do 2.
x=6
Podziel 12 przez 2.
x=\frac{8}{2}
Teraz rozwiąż równanie x=\frac{10±2}{2} dla operatora ± będącego minusem. Odejmij 2 od 10.
x=4
Podziel 8 przez 2.
x=6 x=4
Równanie jest teraz rozwiązane.
x^{2}-12x+19+2x=-5
Dodaj 2x do obu stron.
x^{2}-10x+19=-5
Połącz -12x i 2x, aby uzyskać -10x.
x^{2}-10x=-5-19
Odejmij 19 od obu stron.
x^{2}-10x=-24
Odejmij 19 od -5, aby uzyskać -24.
x^{2}-10x+\left(-5\right)^{2}=-24+\left(-5\right)^{2}
Podziel -10, współczynnik x terminu, 2, aby uzyskać -5. Następnie Dodaj kwadrat -5 do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-10x+25=-24+25
Podnieś do kwadratu -5.
x^{2}-10x+25=1
Dodaj -24 do 25.
\left(x-5\right)^{2}=1
Współczynnik x^{2}-10x+25. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Oblicz pierwiastek kwadratowy obu stron równania.
x-5=1 x-5=-1
Uprość.
x=6 x=4
Dodaj 5 do obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}