Rozwiąż względem x
x=-4
x=-2
Wykres
Udostępnij
Skopiowano do schowka
x^{2}+8+6x=0
Dodaj 6x do obu stron.
x^{2}+6x+8=0
Zmień postać wielomianu, aby nadać mu postać standardową. Umieść czynniki w kolejności od najwyższej do najniższej potęgi.
a+b=6 ab=8
Aby rozwiązać równanie, rozłóż x^{2}+6x+8 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,8 2,4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 8.
1+8=9 2+4=6
Oblicz sumę dla każdej pary.
a=2 b=4
Rozwiązanie to para, która daje sumę 6.
\left(x+2\right)\left(x+4\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=-2 x=-4
Aby znaleźć rozwiązania równań, rozwiąż: x+2=0 i x+4=0.
x^{2}+8+6x=0
Dodaj 6x do obu stron.
x^{2}+6x+8=0
Zmień postać wielomianu, aby nadać mu postać standardową. Umieść czynniki w kolejności od najwyższej do najniższej potęgi.
a+b=6 ab=1\times 8=8
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+8. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,8 2,4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 8.
1+8=9 2+4=6
Oblicz sumę dla każdej pary.
a=2 b=4
Rozwiązanie to para, która daje sumę 6.
\left(x^{2}+2x\right)+\left(4x+8\right)
Przepisz x^{2}+6x+8 jako \left(x^{2}+2x\right)+\left(4x+8\right).
x\left(x+2\right)+4\left(x+2\right)
x w pierwszej i 4 w drugiej grupie.
\left(x+2\right)\left(x+4\right)
Wyłącz przed nawias wspólny czynnik x+2, używając właściwości rozdzielności.
x=-2 x=-4
Aby znaleźć rozwiązania równań, rozwiąż: x+2=0 i x+4=0.
x^{2}+8+6x=0
Dodaj 6x do obu stron.
x^{2}+6x+8=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-6±\sqrt{6^{2}-4\times 8}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 6 do b i 8 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 8}}{2}
Podnieś do kwadratu 6.
x=\frac{-6±\sqrt{36-32}}{2}
Pomnóż -4 przez 8.
x=\frac{-6±\sqrt{4}}{2}
Dodaj 36 do -32.
x=\frac{-6±2}{2}
Oblicz pierwiastek kwadratowy wartości 4.
x=-\frac{4}{2}
Teraz rozwiąż równanie x=\frac{-6±2}{2} dla operatora ± będącego plusem. Dodaj -6 do 2.
x=-2
Podziel -4 przez 2.
x=-\frac{8}{2}
Teraz rozwiąż równanie x=\frac{-6±2}{2} dla operatora ± będącego minusem. Odejmij 2 od -6.
x=-4
Podziel -8 przez 2.
x=-2 x=-4
Równanie jest teraz rozwiązane.
x^{2}+8+6x=0
Dodaj 6x do obu stron.
x^{2}+6x=-8
Odejmij 8 od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
x^{2}+6x+3^{2}=-8+3^{2}
Podziel 6, współczynnik x terminu, 2, aby uzyskać 3. Następnie Dodaj kwadrat 3 do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+6x+9=-8+9
Podnieś do kwadratu 3.
x^{2}+6x+9=1
Dodaj -8 do 9.
\left(x+3\right)^{2}=1
Współczynnik x^{2}+6x+9. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{1}
Oblicz pierwiastek kwadratowy obu stron równania.
x+3=1 x+3=-1
Uprość.
x=-2 x=-4
Odejmij 3 od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}