Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=6 ab=1\left(-7\right)=-7
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx-7. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-1 b=7
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Jedyna taka para to rozwiązanie systemowe.
\left(x^{2}-x\right)+\left(7x-7\right)
Przepisz x^{2}+6x-7 jako \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
x w pierwszej i 7 w drugiej grupie.
\left(x-1\right)\left(x+7\right)
Wyłącz przed nawias wspólny czynnik x-1, używając właściwości rozdzielności.
x^{2}+6x-7=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Podnieś do kwadratu 6.
x=\frac{-6±\sqrt{36+28}}{2}
Pomnóż -4 przez -7.
x=\frac{-6±\sqrt{64}}{2}
Dodaj 36 do 28.
x=\frac{-6±8}{2}
Oblicz pierwiastek kwadratowy wartości 64.
x=\frac{2}{2}
Teraz rozwiąż równanie x=\frac{-6±8}{2} dla operatora ± będącego plusem. Dodaj -6 do 8.
x=1
Podziel 2 przez 2.
x=-\frac{14}{2}
Teraz rozwiąż równanie x=\frac{-6±8}{2} dla operatora ± będącego minusem. Odejmij 8 od -6.
x=-7
Podziel -14 przez 2.
x^{2}+6x-7=\left(x-1\right)\left(x-\left(-7\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 1 za x_{1}, a wartość -7 za x_{2}.
x^{2}+6x-7=\left(x-1\right)\left(x+7\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.