Rozwiąż względem x
x=-6
x=9
Wykres
Udostępnij
Skopiowano do schowka
x^{2}+6x-60-9x=-6
Odejmij 9x od obu stron.
x^{2}-3x-60=-6
Połącz 6x i -9x, aby uzyskać -3x.
x^{2}-3x-60+6=0
Dodaj 6 do obu stron.
x^{2}-3x-54=0
Dodaj -60 i 6, aby uzyskać -54.
a+b=-3 ab=-54
Aby rozwiązać równanie, rozłóż x^{2}-3x-54 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-54 2,-27 3,-18 6,-9
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -54.
1-54=-53 2-27=-25 3-18=-15 6-9=-3
Oblicz sumę dla każdej pary.
a=-9 b=6
Rozwiązanie to para, która daje sumę -3.
\left(x-9\right)\left(x+6\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=9 x=-6
Aby znaleźć rozwiązania równań, rozwiąż: x-9=0 i x+6=0.
x^{2}+6x-60-9x=-6
Odejmij 9x od obu stron.
x^{2}-3x-60=-6
Połącz 6x i -9x, aby uzyskać -3x.
x^{2}-3x-60+6=0
Dodaj 6 do obu stron.
x^{2}-3x-54=0
Dodaj -60 i 6, aby uzyskać -54.
a+b=-3 ab=1\left(-54\right)=-54
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx-54. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-54 2,-27 3,-18 6,-9
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -54.
1-54=-53 2-27=-25 3-18=-15 6-9=-3
Oblicz sumę dla każdej pary.
a=-9 b=6
Rozwiązanie to para, która daje sumę -3.
\left(x^{2}-9x\right)+\left(6x-54\right)
Przepisz x^{2}-3x-54 jako \left(x^{2}-9x\right)+\left(6x-54\right).
x\left(x-9\right)+6\left(x-9\right)
x w pierwszej i 6 w drugiej grupie.
\left(x-9\right)\left(x+6\right)
Wyłącz przed nawias wspólny czynnik x-9, używając właściwości rozdzielności.
x=9 x=-6
Aby znaleźć rozwiązania równań, rozwiąż: x-9=0 i x+6=0.
x^{2}+6x-60-9x=-6
Odejmij 9x od obu stron.
x^{2}-3x-60=-6
Połącz 6x i -9x, aby uzyskać -3x.
x^{2}-3x-60+6=0
Dodaj 6 do obu stron.
x^{2}-3x-54=0
Dodaj -60 i 6, aby uzyskać -54.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-54\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -3 do b i -54 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-54\right)}}{2}
Podnieś do kwadratu -3.
x=\frac{-\left(-3\right)±\sqrt{9+216}}{2}
Pomnóż -4 przez -54.
x=\frac{-\left(-3\right)±\sqrt{225}}{2}
Dodaj 9 do 216.
x=\frac{-\left(-3\right)±15}{2}
Oblicz pierwiastek kwadratowy wartości 225.
x=\frac{3±15}{2}
Liczba przeciwna do -3 to 3.
x=\frac{18}{2}
Teraz rozwiąż równanie x=\frac{3±15}{2} dla operatora ± będącego plusem. Dodaj 3 do 15.
x=9
Podziel 18 przez 2.
x=-\frac{12}{2}
Teraz rozwiąż równanie x=\frac{3±15}{2} dla operatora ± będącego minusem. Odejmij 15 od 3.
x=-6
Podziel -12 przez 2.
x=9 x=-6
Równanie jest teraz rozwiązane.
x^{2}+6x-60-9x=-6
Odejmij 9x od obu stron.
x^{2}-3x-60=-6
Połącz 6x i -9x, aby uzyskać -3x.
x^{2}-3x=-6+60
Dodaj 60 do obu stron.
x^{2}-3x=54
Dodaj -6 i 60, aby uzyskać 54.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=54+\left(-\frac{3}{2}\right)^{2}
Podziel -3, współczynnik x terminu, 2, aby uzyskać -\frac{3}{2}. Następnie Dodaj kwadrat -\frac{3}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-3x+\frac{9}{4}=54+\frac{9}{4}
Podnieś do kwadratu -\frac{3}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}-3x+\frac{9}{4}=\frac{225}{4}
Dodaj 54 do \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{225}{4}
Współczynnik x^{2}-3x+\frac{9}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x-\frac{3}{2}=\frac{15}{2} x-\frac{3}{2}=-\frac{15}{2}
Uprość.
x=9 x=-6
Dodaj \frac{3}{2} do obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}