Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=6 ab=1\times 9=9
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx+9. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,9 3,3
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 9.
1+9=10 3+3=6
Oblicz sumę dla każdej pary.
a=3 b=3
Rozwiązanie to para, która daje sumę 6.
\left(x^{2}+3x\right)+\left(3x+9\right)
Przepisz x^{2}+6x+9 jako \left(x^{2}+3x\right)+\left(3x+9\right).
x\left(x+3\right)+3\left(x+3\right)
x w pierwszej i 3 w drugiej grupie.
\left(x+3\right)\left(x+3\right)
Wyłącz przed nawias wspólny czynnik x+3, używając właściwości rozdzielności.
\left(x+3\right)^{2}
Przepisz jako kwadrat dwumianu.
factor(x^{2}+6x+9)
Ten trójmian ma postać kwadratu trójmianu, być może pomnożonego przez wspólny czynnik. Kwadraty trójmianów można faktoryzować, znajdując pierwiastki kwadratowe początkowych i końcowych czynników.
\sqrt{9}=3
Znajdź pierwiastek kwadratowy końcowego czynnika 9.
\left(x+3\right)^{2}
Kwadrat trójmianu to kwadrat dwumianu, który jest sumą lub różnicą pierwiastków kwadratowych początkowego i końcowego czynnika, ze znakiem określonym przez znak środkowego czynnika kwadratu trójmianu.
x^{2}+6x+9=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-6±\sqrt{36-4\times 9}}{2}
Podnieś do kwadratu 6.
x=\frac{-6±\sqrt{36-36}}{2}
Pomnóż -4 przez 9.
x=\frac{-6±\sqrt{0}}{2}
Dodaj 36 do -36.
x=\frac{-6±0}{2}
Oblicz pierwiastek kwadratowy wartości 0.
x^{2}+6x+9=\left(x-\left(-3\right)\right)\left(x-\left(-3\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość -3 za x_{1}, a wartość -3 za x_{2}.
x^{2}+6x+9=\left(x+3\right)\left(x+3\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.