Rozwiąż względem x (complex solution)
x=\frac{-3+\sqrt{31}i}{2}\approx -1,5+2,783882181i
x=\frac{-\sqrt{31}i-3}{2}\approx -1,5-2,783882181i
Wykres
Udostępnij
Skopiowano do schowka
x^{2}+3x=-10
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x^{2}+3x-\left(-10\right)=-10-\left(-10\right)
Dodaj 10 do obu stron równania.
x^{2}+3x-\left(-10\right)=0
Odjęcie -10 od tej samej wartości pozostawia wartość 0.
x^{2}+3x+10=0
Odejmij -10 od 0.
x=\frac{-3±\sqrt{3^{2}-4\times 10}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 3 do b i 10 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 10}}{2}
Podnieś do kwadratu 3.
x=\frac{-3±\sqrt{9-40}}{2}
Pomnóż -4 przez 10.
x=\frac{-3±\sqrt{-31}}{2}
Dodaj 9 do -40.
x=\frac{-3±\sqrt{31}i}{2}
Oblicz pierwiastek kwadratowy wartości -31.
x=\frac{-3+\sqrt{31}i}{2}
Teraz rozwiąż równanie x=\frac{-3±\sqrt{31}i}{2} dla operatora ± będącego plusem. Dodaj -3 do i\sqrt{31}.
x=\frac{-\sqrt{31}i-3}{2}
Teraz rozwiąż równanie x=\frac{-3±\sqrt{31}i}{2} dla operatora ± będącego minusem. Odejmij i\sqrt{31} od -3.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
Równanie jest teraz rozwiązane.
x^{2}+3x=-10
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-10+\left(\frac{3}{2}\right)^{2}
Podziel 3, współczynnik x terminu, 2, aby uzyskać \frac{3}{2}. Następnie Dodaj kwadrat \frac{3}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+3x+\frac{9}{4}=-10+\frac{9}{4}
Podnieś do kwadratu \frac{3}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+3x+\frac{9}{4}=-\frac{31}{4}
Dodaj -10 do \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=-\frac{31}{4}
Współczynnik x^{2}+3x+\frac{9}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{3}{2}=\frac{\sqrt{31}i}{2} x+\frac{3}{2}=-\frac{\sqrt{31}i}{2}
Uprość.
x=\frac{-3+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-3}{2}
Odejmij \frac{3}{2} od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}