Rozłóż na czynniki
\left(x-2\right)\left(x+2\right)\left(x^{2}+4\right)\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{4}-4x^{2}+16\right)
Oblicz
\left(x^{4}-16\right)\left(x^{4}-4x^{2}+16\right)\left(\left(x^{2}+4\right)^{2}-4x^{2}\right)
Wykres
Udostępnij
Skopiowano do schowka
\left(x^{6}-64\right)\left(x^{6}+64\right)
Przepisz x^{12}-4096 jako \left(x^{6}\right)^{2}-64^{2}. Różnica kwadratów może być współczynnikina przy użyciu reguły: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-8\right)\left(x^{3}+8\right)
Rozważ x^{6}-64. Przepisz x^{6}-64 jako \left(x^{3}\right)^{2}-8^{2}. Różnica kwadratów może być współczynnikina przy użyciu reguły: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-2\right)\left(x^{2}+2x+4\right)
Rozważ x^{3}-8. Przepisz x^{3}-8 jako x^{3}-2^{3}. Różnica w modułach może być współczynnikina przy użyciu reguły: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+2\right)\left(x^{2}-2x+4\right)
Rozważ x^{3}+8. Przepisz x^{3}+8 jako x^{3}+2^{3}. Suma modułów może być współczynnikina przy użyciu reguły: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}+4\right)\left(x^{4}-4x^{2}+16\right)
Rozważ x^{6}+64. Przepisz x^{6}+64 jako \left(x^{2}\right)^{3}+4^{3}. Suma modułów może być współczynnikina przy użyciu reguły: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-2\right)\left(x+2\right)\left(x^{2}-2x+4\right)\left(x^{2}+2x+4\right)\left(x^{2}+4\right)\left(x^{4}-4x^{2}+16\right)
Przepisz całe wyrażenie rozłożone na czynniki. Następujące wielomiany nie mogą być rozłożone na czynniki, ponieważ nie mają żadnych pierwiastków wymiernych: x^{2}-2x+4,x^{2}+2x+4,x^{2}+4,x^{4}-4x^{2}+16.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}