Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

xx+4=-5x
Zmienna x nie może być równa 0, ponieważ nie zdefiniowano dzielenia przez zero. Pomnóż obie strony równania przez x.
x^{2}+4=-5x
Pomnóż x przez x, aby uzyskać x^{2}.
x^{2}+4+5x=0
Dodaj 5x do obu stron.
x^{2}+5x+4=0
Zmień postać wielomianu, aby nadać mu postać standardową. Umieść czynniki w kolejności od najwyższej do najniższej potęgi.
a+b=5 ab=4
Aby rozwiązać równanie, rozłóż x^{2}+5x+4 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,4 2,2
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 4.
1+4=5 2+2=4
Oblicz sumę dla każdej pary.
a=1 b=4
Rozwiązanie to para, która daje sumę 5.
\left(x+1\right)\left(x+4\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=-1 x=-4
Aby znaleźć rozwiązania równań, rozwiąż: x+1=0 i x+4=0.
xx+4=-5x
Zmienna x nie może być równa 0, ponieważ nie zdefiniowano dzielenia przez zero. Pomnóż obie strony równania przez x.
x^{2}+4=-5x
Pomnóż x przez x, aby uzyskać x^{2}.
x^{2}+4+5x=0
Dodaj 5x do obu stron.
x^{2}+5x+4=0
Zmień postać wielomianu, aby nadać mu postać standardową. Umieść czynniki w kolejności od najwyższej do najniższej potęgi.
a+b=5 ab=1\times 4=4
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+4. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,4 2,2
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 4.
1+4=5 2+2=4
Oblicz sumę dla każdej pary.
a=1 b=4
Rozwiązanie to para, która daje sumę 5.
\left(x^{2}+x\right)+\left(4x+4\right)
Przepisz x^{2}+5x+4 jako \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
x w pierwszej i 4 w drugiej grupie.
\left(x+1\right)\left(x+4\right)
Wyłącz przed nawias wspólny czynnik x+1, używając właściwości rozdzielności.
x=-1 x=-4
Aby znaleźć rozwiązania równań, rozwiąż: x+1=0 i x+4=0.
xx+4=-5x
Zmienna x nie może być równa 0, ponieważ nie zdefiniowano dzielenia przez zero. Pomnóż obie strony równania przez x.
x^{2}+4=-5x
Pomnóż x przez x, aby uzyskać x^{2}.
x^{2}+4+5x=0
Dodaj 5x do obu stron.
x^{2}+5x+4=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 5 do b i 4 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
Podnieś do kwadratu 5.
x=\frac{-5±\sqrt{25-16}}{2}
Pomnóż -4 przez 4.
x=\frac{-5±\sqrt{9}}{2}
Dodaj 25 do -16.
x=\frac{-5±3}{2}
Oblicz pierwiastek kwadratowy wartości 9.
x=-\frac{2}{2}
Teraz rozwiąż równanie x=\frac{-5±3}{2} dla operatora ± będącego plusem. Dodaj -5 do 3.
x=-1
Podziel -2 przez 2.
x=-\frac{8}{2}
Teraz rozwiąż równanie x=\frac{-5±3}{2} dla operatora ± będącego minusem. Odejmij 3 od -5.
x=-4
Podziel -8 przez 2.
x=-1 x=-4
Równanie jest teraz rozwiązane.
xx+4=-5x
Zmienna x nie może być równa 0, ponieważ nie zdefiniowano dzielenia przez zero. Pomnóż obie strony równania przez x.
x^{2}+4=-5x
Pomnóż x przez x, aby uzyskać x^{2}.
x^{2}+4+5x=0
Dodaj 5x do obu stron.
x^{2}+5x=-4
Odejmij 4 od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
Podziel 5, współczynnik x terminu, 2, aby uzyskać \frac{5}{2}. Następnie Dodaj kwadrat \frac{5}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
Podnieś do kwadratu \frac{5}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
Dodaj -4 do \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
Współczynnik x^{2}+5x+\frac{25}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
Uprość.
x=-1 x=-4
Odejmij \frac{5}{2} od obu stron równania.