Rozwiąż względem F
F=\frac{134217728s}{2^{E}}-2048
Rozwiąż względem E
\left\{\begin{matrix}E=\log_{2}\left(\frac{s}{F+2048}\right)+27\text{, }&\left(s<0\text{ and }F<-2048\right)\text{ or }\left(s>0\text{ and }F>-2048\right)\\E\in \mathrm{R}\text{, }&s=0\text{ and }F=-2048\end{matrix}\right,
Udostępnij
Skopiowano do schowka
s=\left(1+\frac{F}{2048}\right)\times 2^{E-16}
Podnieś 2 do potęgi 11, aby uzyskać 2048.
s=2^{E-16}+\frac{F}{2048}\times 2^{E-16}
Użyj właściwości rozdzielności, aby pomnożyć 1+\frac{F}{2048} przez 2^{E-16}.
s=2^{E-16}+\frac{F\times 2^{E-16}}{2048}
Pokaż wartość \frac{F}{2048}\times 2^{E-16} jako pojedynczy ułamek.
2^{E-16}+\frac{F\times 2^{E-16}}{2048}=s
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\frac{F\times 2^{E-16}}{2048}=s-2^{E-16}
Odejmij 2^{E-16} od obu stron.
F\times 2^{E-16}=2048s-2048\times 2^{E-16}
Pomnóż obie strony równania przez 2048.
2^{E-16}F=2048s-2048\times 2^{E-16}
Równanie jest w postaci standardowej.
\frac{2^{E-16}F}{2^{E-16}}=\frac{-\frac{2^{E}}{32}+2048s}{2^{E-16}}
Podziel obie strony przez 2^{E-16}.
F=\frac{-\frac{2^{E}}{32}+2048s}{2^{E-16}}
Dzielenie przez 2^{E-16} cofa mnożenie przez 2^{E-16}.
F=\frac{2048\left(65536s-2^{E}\right)}{2^{E}}
Podziel 2048s-\frac{2^{E}}{32} przez 2^{E-16}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}