Rozwiąż względem m
m=\frac{n+4}{2}
Rozwiąż względem n
n=2\left(m-2\right)
Udostępnij
Skopiowano do schowka
2m+3=n+7
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
2m=n+7-3
Odejmij 3 od obu stron.
2m=n+4
Odejmij 3 od 7, aby uzyskać 4.
\frac{2m}{2}=\frac{n+4}{2}
Podziel obie strony przez 2.
m=\frac{n+4}{2}
Dzielenie przez 2 cofa mnożenie przez 2.
m=\frac{n}{2}+2
Podziel n+4 przez 2.
n=2m+3-7
Odejmij 7 od obu stron.
n=2m-4
Odejmij 7 od 3, aby uzyskać -4.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}