Rozwiąż względem h (complex solution)
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{C}\text{, }&k=-3\end{matrix}\right,
Rozwiąż względem h
\left\{\begin{matrix}\\h=0\text{, }&\text{unconditionally}\\h\in \mathrm{R}\text{, }&k=-3\end{matrix}\right,
Rozwiąż względem f (complex solution)
f\in \mathrm{C}
k=-3\text{ or }h=0
Rozwiąż względem f
f\in \mathrm{R}
k=-3\text{ or }h=0
Udostępnij
Skopiowano do schowka
hk+6h=3h-k\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Użyj właściwości rozdzielności, aby pomnożyć h przez k+6.
hk+6h-3h=-k\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Odejmij 3h od obu stron.
hk+3h=-k\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Połącz 6h i -3h, aby uzyskać 3h.
hk+3h=-2k\frac{\mathrm{d}}{\mathrm{d}x}(f)
Pomnóż -1 przez 2, aby uzyskać -2.
\left(k+3\right)h=-2k\frac{\mathrm{d}}{\mathrm{d}x}(f)
Połącz wszystkie czynniki zawierające h.
\left(k+3\right)h=0
Równanie jest w postaci standardowej.
h=0
Podziel 0 przez k+3.
hk+6h=3h-k\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Użyj właściwości rozdzielności, aby pomnożyć h przez k+6.
hk+6h-3h=-k\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Odejmij 3h od obu stron.
hk+3h=-k\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Połącz 6h i -3h, aby uzyskać 3h.
hk+3h=-2k\frac{\mathrm{d}}{\mathrm{d}x}(f)
Pomnóż -1 przez 2, aby uzyskać -2.
\left(k+3\right)h=-2k\frac{\mathrm{d}}{\mathrm{d}x}(f)
Połącz wszystkie czynniki zawierające h.
\left(k+3\right)h=0
Równanie jest w postaci standardowej.
h=0
Podziel 0 przez k+3.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}