Przejdź do głównej zawartości
Różniczkuj względem x
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{\left(2x^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{2})-\left(-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+1)\right)}{\left(2x^{2}+1\right)^{2}}
Dla dowolnych dwóch różniczkowalnych funkcji pochodna ilorazu dwóch funkcji to mianownik pomnożony przez pochodną licznika minus licznik pomnożony przez pochodną mianownika, wszystko podzielone przez kwadrat mianownika.
\frac{\left(2x^{2}+1\right)\times 2\left(-1\right)x^{2-1}-\left(-x^{2}\times 2\times 2x^{2-1}\right)}{\left(2x^{2}+1\right)^{2}}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
\frac{\left(2x^{2}+1\right)\left(-2\right)x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
Wykonaj operacje arytmetyczne.
\frac{2x^{2}\left(-2\right)x^{1}-2x^{1}-\left(-x^{2}\times 4x^{1}\right)}{\left(2x^{2}+1\right)^{2}}
Rozwiń przy użyciu właściwości rozdzielności.
\frac{2\left(-2\right)x^{2+1}-2x^{1}-\left(-4x^{2+1}\right)}{\left(2x^{2}+1\right)^{2}}
Aby pomnożyć potęgi o tej samej podstawie, dodaj ich wykładniki.
\frac{-4x^{3}-2x^{1}-\left(-4x^{3}\right)}{\left(2x^{2}+1\right)^{2}}
Wykonaj operacje arytmetyczne.
\frac{\left(-4-\left(-4\right)\right)x^{3}-2x^{1}}{\left(2x^{2}+1\right)^{2}}
Połącz podobne czynniki.
\frac{-2x^{1}}{\left(2x^{2}+1\right)^{2}}
Odejmij -4 od -4.
\frac{-2x}{\left(2x^{2}+1\right)^{2}}
Dla dowolnego czynnika t spełnione jest t^{1}=t.