E d P = \frac { 750 - 1000 } { 1000 } \times \frac { 100 } { 125 - 100 }
Rozwiąż względem E
E=-\frac{1}{Pd}
P\neq 0\text{ and }d\neq 0
Rozwiąż względem P
P=-\frac{1}{Ed}
d\neq 0\text{ and }E\neq 0
Udostępnij
Skopiowano do schowka
EdP=\frac{-250}{1000}\times \left(\frac{100}{125-100}\right)
Odejmij 1000 od 750, aby uzyskać -250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{125-100}\right)
Zredukuj ułamek \frac{-250}{1000} do najmniejszych czynników przez odejmowanie i skracanie ułamka 250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{25}\right)
Odejmij 100 od 125, aby uzyskać 25.
EdP=\left(-\frac{1}{4}\right)\times 4
Podziel 100 przez 25, aby uzyskać 4.
PdE=-1
Równanie jest w postaci standardowej.
\frac{PdE}{Pd}=-\frac{1}{Pd}
Podziel obie strony przez dP.
E=-\frac{1}{Pd}
Dzielenie przez dP cofa mnożenie przez dP.
EdP=\frac{-250}{1000}\times \left(\frac{100}{125-100}\right)
Odejmij 1000 od 750, aby uzyskać -250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{125-100}\right)
Zredukuj ułamek \frac{-250}{1000} do najmniejszych czynników przez odejmowanie i skracanie ułamka 250.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{25}\right)
Odejmij 100 od 125, aby uzyskać 25.
EdP=\left(-\frac{1}{4}\right)\times 4
Podziel 100 przez 25, aby uzyskać 4.
EdP=-1
Równanie jest w postaci standardowej.
\frac{EdP}{Ed}=-\frac{1}{Ed}
Podziel obie strony przez Ed.
P=-\frac{1}{Ed}
Dzielenie przez Ed cofa mnożenie przez Ed.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}