Rozłóż na czynniki
-\left(A-2\right)\left(A+1\right)
Oblicz
-\left(A-2\right)\left(A+1\right)
Udostępnij
Skopiowano do schowka
-A^{2}+A+2
Zmień postać wielomianu, aby nadać mu postać standardową. Umieść czynniki w kolejności od najwyższej do najniższej potęgi.
a+b=1 ab=-2=-2
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako -A^{2}+aA+bA+2. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=2 b=-1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Jedyna taka para to rozwiązanie systemowe.
\left(-A^{2}+2A\right)+\left(-A+2\right)
Przepisz -A^{2}+A+2 jako \left(-A^{2}+2A\right)+\left(-A+2\right).
-A\left(A-2\right)-\left(A-2\right)
-A w pierwszej i -1 w drugiej grupie.
\left(A-2\right)\left(-A-1\right)
Wyłącz przed nawias wspólny czynnik A-2, używając właściwości rozdzielności.
-A^{2}+A+2=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
A=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
A=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Podnieś do kwadratu 1.
A=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
Pomnóż -4 przez -1.
A=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
Pomnóż 4 przez 2.
A=\frac{-1±\sqrt{9}}{2\left(-1\right)}
Dodaj 1 do 8.
A=\frac{-1±3}{2\left(-1\right)}
Oblicz pierwiastek kwadratowy wartości 9.
A=\frac{-1±3}{-2}
Pomnóż 2 przez -1.
A=\frac{2}{-2}
Teraz rozwiąż równanie A=\frac{-1±3}{-2} dla operatora ± będącego plusem. Dodaj -1 do 3.
A=-1
Podziel 2 przez -2.
A=-\frac{4}{-2}
Teraz rozwiąż równanie A=\frac{-1±3}{-2} dla operatora ± będącego minusem. Odejmij 3 od -1.
A=2
Podziel -4 przez -2.
-A^{2}+A+2=-\left(A-\left(-1\right)\right)\left(A-2\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość -1 za x_{1}, a wartość 2 za x_{2}.
-A^{2}+A+2=-\left(A+1\right)\left(A-2\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}