Oblicz
14
Rozłóż na czynniki
2\times 7
Udostępnij
Skopiowano do schowka
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}
Umożliwia racjonalizację mianownika \frac{1}{7-4\sqrt{3}} przez mnożenie licznika i mianownika przez 7+4\sqrt{3}.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{7^{2}-\left(-4\sqrt{3}\right)^{2}}
Rozważ \left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-\left(-4\sqrt{3}\right)^{2}}
Podnieś 7 do potęgi 2, aby uzyskać 49.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Rozwiń \left(-4\sqrt{3}\right)^{2}.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-16\left(\sqrt{3}\right)^{2}}
Podnieś -4 do potęgi 2, aby uzyskać 16.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-16\times 3}
Kwadrat liczby \sqrt{3} to 3.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-48}
Pomnóż 16 przez 3, aby uzyskać 48.
7-4\sqrt{3}+\frac{7+4\sqrt{3}}{1}
Odejmij 48 od 49, aby uzyskać 1.
7-4\sqrt{3}+7+4\sqrt{3}
Wynikiem dzielenia liczby przez jeden jest ta sama liczba.
14-4\sqrt{3}+4\sqrt{3}
Dodaj 7 i 7, aby uzyskać 14.
14
Połącz -4\sqrt{3} i 4\sqrt{3}, aby uzyskać 0.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}