Rozłóż na czynniki
7x\left(x-1\right)\left(x+1\right)\left(-x^{2}+x-1\right)\left(x^{2}+x+1\right)
Oblicz
7x\left(1-x^{2}\right)\left(\left(x^{2}+1\right)^{2}-x^{2}\right)
Wykres
Udostępnij
Skopiowano do schowka
7\left(x-x^{7}\right)
Wyłącz przed nawias 7.
x\left(1-x^{6}\right)
Rozważ x-x^{7}. Wyłącz przed nawias x.
\left(1+x^{3}\right)\left(1-x^{3}\right)
Rozważ 1-x^{6}. Przepisz 1-x^{6} jako 1^{2}-\left(-x^{3}\right)^{2}. Różnica kwadratów może być współczynnikina przy użyciu reguły: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}+1\right)\left(-x^{3}+1\right)
Zmień kolejność czynników.
\left(x+1\right)\left(x^{2}-x+1\right)
Rozważ x^{3}+1. Przepisz x^{3}+1 jako x^{3}+1^{3}. Suma modułów może być współczynnikina przy użyciu reguły: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(-x^{2}-x-1\right)
Rozważ -x^{3}+1. Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 1, a q jest dzielnikiem współczynnika wiodącego -1. Jeden z tych pierwiastków wynosi 1. Rozłóż wielomian na czynniki, dzieląc go przez x-1.
7x\left(x+1\right)\left(x^{2}-x+1\right)\left(x-1\right)\left(-x^{2}-x-1\right)
Przepisz całe wyrażenie rozłożone na czynniki. Następujące wielomiany nie mogą być rozłożone na czynniki, ponieważ nie mają żadnych pierwiastków wymiernych: -x^{2}-x-1,x^{2}-x+1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}